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CHAPTER 1 

INTRODUCTION 

 

The dissertation research studied the synthesis, characterization and application of 

semiconducting metal chalcogenide gel networks. The main goals were to (1) investigate 

the mechanism of metal chalcogenide nanopaerticle (NP) gel formation, (2) explore the 

cation exchange ability of ZnS gel networks for the generation of new aerogel materials 

and for understanding the driving forces behind the process, and (3) quantify the ability 

of ZnS aerogels to remove heavy metals from aqueous solutions. This first chapter 

provides background introductory information on semiconducting materials, especially 

metal chalcogenide nanomaterials, their synthesis and assembly methods. Sol-gel 

chemistry and cation-exchange reactions are two of the areas of study of the dissertation 

research, and are therefore introduced, as well. The status of water remediation materials 

and procedures, mainly of those using cation exchange materials, is also presented. 

 

1.1 Semiconducting NPs 

“Nanomaterials” and “nanotechnology” have become buzz words in most gatherings 

of the scientific research community. Usually associated with artificially achieved 

materials of recent origin, nanomaterials have been surrounding us, and have been part of 

us, since the beginning of time. Examples of such include beautiful structures like DNA, 

the ultimate nanomaterial, with an intricate combination of form and function, or the 

amazing light-into-energy converter photosynthetic nanofactory found in all green leaves. 

The fever from the nanotechnology bug started once scientists realized the plethora of 
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new properties and applications that can be accessed and capitalized upon when materials 

reach this unique nano-scale domain. As it emerges from its infancy, the main goal of 

nanotechnology today is to develop new functional materials. To achieve this goal, it is 

necessary to exploit and enhance the functional performance of the NP for the 

achievement of optimum properties. The challenge comes in the effort of developing new 

synthetic strategies and materials using rational chemistry, with the ability to control the 

composition, size, shape and structural aspects of the desired NPs.  

Bulk inorganic materials are classified based on their electronic conductivity into 

three groups: metals, semiconductors and insulators. Metals are regarded as consisting of 

a lattice of positive cores surrounded by a freely moving sea of electrons that renders 

them electronically conducting. Semiconductors (materials from group IV, III-V, II-VI or 

IV-VI) have a filled electronic band (the valence band) and an empty band (the 

conduction band).1 These two bands are analogous to the highest occupied molecular 

orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) in molecules. As 

atoms or ions are packed together to form the bulk solid, the electronic HOMO and 

LUMO levels combine to form bands. The separation between the conduction and 

valence bands is between 0.3 and 3.8 eV depending on the material, and it is known as 

the band gap energy (Eg).
1, 2 Conductivity occurs when sufficient energy is provided to 

promote electrons from the valence band to the conduction band. In insulating materials, 

the band gap energy is very large (> 4 eV), and the materials do not conduct electricity. 

NPs, defined as materials that have at least one dimension below 100 nm, and 

thus having a limited number of atoms in their composition, exhibit an electronic 

structure intermediate between the molecular and bulk materials. The restriction in size 
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causes the electrons to follow the “particle in a box” model, and the electronic levels 

within the conduction and valence bands become quantized, instead of being continuous, 

as is the case in bulk. More specifically, when the NP size is smaller than a critical 

characteristic size of the bulk-exciton Bohr radius,3-5 electronic energy levels split, 

according to Pauli’s exclusion principle. Thus, in semiconductors, the band gap energy 

increases in NPs with respect to bulk, yielding the phenomenon referred to as the 

“quantum confinement effect”. That is why semiconducting NPs are also named 

“quantum dots” (QDs). For a specific material and temperature, the band gap energy is 

dependent on the quantum dot size, with smaller dots having larger band gap energies. 

The quantum confinement effect on the band gap energy is exemplified in Figure 1.1 and 

imparts unusual opto-electronic characteristics to QDs. Upon irradiation with light with 

energy higher than Eg, an electron from the valence band can be excited into the 

conduction band, leaving a hole in the valence band. This results in an absorption peak in 

the spectrum. Since the Eg value is dependent on the particle size, the position of the 

absorption peak also shifts to higher wavelengths (lower energies) as the particle size 

increases. Also, upon the electron relaxation from the conduction to the valence band, the 

energy can be emitted as light, conferring photoluminescent properties. Thus, the 

emission wavelength is also size dependent and tunable. The ability to control and tune 

the optical emission and absorption properties by changing the particle size spurred 

numerous investigations into the use of QDs  in applications such as imaging and 

labeling,6 photovoltaics,7-10 photodetectors,11 and sensors.12-14 
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Figure 1.1. Schematic representation of the electronic states in nanoscale and bulk 

semiconductors, showing the increase of the band gap energy (Eg) with the decrease in 

particle size (adapted from Steigerwald and Brus3) 

 

Another characteristic of QDs is their high surface to volume ratio. As the particle 

size decreases, a higher percentage of atoms are surface atoms, and can result in the 

presence of surface imperfections and dangling bonds. This causes the availability of 

energy levels that are usually located within the QDs bandgap, creating surface trap 

states. These trap states can provide an alternate path for electrons or holes to recombine, 

affecting the overall performance of devices that depend on the QDs emission properties. 

Usually, these trap state emissions cause the lowering of the overall fluorescence 
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quantum yield, the presence of broad fluorescence ranges or the phenomenon of blinking 

because of charge recombination pathways.6 To eliminate the side effects created by the 

presence of surface defects, two main pathways have been adopted. The first uses a 

combination of two or more semiconductors forming heterojunctions in a core-shell 

fashion, passivating the QD surface. Usually, a material with a wider bandgap is used to 

surround the core and effectively trap the electron and hole within the electronic energy 

levels of the core semiconductor.15 A second pathway involves the use of certain organic 

coordinating ligands such as alkyl amines, alkyl phosphine oxides or fatty acids16 to 

passivate the QD surface. This approach is usually less effective than the use of an 

inorganic passivating shell in eliminating the trap states.  

 

1.2 Metal chalcogenide NPs 

One of the factors driving the current research in nanoscale materials is the need for 

constant miniaturization of optical and electronic devices. Semiconducting metal 

chalcogenide NPs (II-VI and IV-VI) have received particular interest, due to the strong 

quantum confinement behavior that they exhibit in the 1–20 nm range. Therefore, 

significant progress has been made in the synthesis of materials such as CdSe, CdS, 

CdTe, ZnS, ZnSe, PbS, PbSe and PbTe with controlled sizes and shapes. The precise 

control of size and shape is very important when investigating the physical properties of 

the NPs. For example, by manipulating the size and composition of the particles, band 

gap energies that span from the mid–to–near infrared (PbS, PbSe, PbTe), to visible 

(CdSe, CdS, CdTe) and even into the ultraviolet (ZnS, ZnSe) can be accessed. Several 

synthetic routes3, 17, 18 have been most successful in producing high quality metal 
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chalcogenide NPs. For the dissertation research, the II-VI metal chalcogenides (CdSe, 

CdS and ZnS) are of interest, and their synthetic strategies will be discussed further. The 

two main types of colloidal chemistry used for the preparation of metal chalcogenide NPs 

are the arrested precipitation in solution (room temperature synthesis) and the molecular 

precursor method (high temperature synthesis). 

 

1.2.1 Synthesis of metal chalcogenide NPs using the arrested precipitation method 

Controlled precipitation reactions can be performed in inverse micelle solutions 

(i.e. AOT/H2O/heptane, where AOT= sodium bis(2-ethylhexyl)sulfosuccinate) to yield 

dilute suspensions of almost monodisperse NPs and were first reported in the 1980s.19-21 

Materials such as CdS, CdSe and ZnS were produced using such methods.22, 23 The 

method involves the mixing of two separate dilute aqueous solutions of the metal ion and 

the chalcogenide ion that have been previously dispersed in a much larger volume of 

nonpolar solvent (i.e. heptane) and surfactant (AOT), resulting in the formation of the 

metal chalcogenide particles inside the confined inverse micellar nano-reactors.24 The 

size of the resulting NP is controlled by the micelle size, which can be tuned by varying 

the ratio of the surfactant to water.25 The NPs thus formed have bare surfaces, which are 

usually then capped using organic ligands.23 This room temperature route provides a 

cheap route for the formation of many NP chemistries. At the same time, the low 

temperature also causes any initial defects to be trapped in the material, resulting in NPs 

that are usually poorly crystalline, and are therefore poorly luminescent.26 
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1.2.2 Synthesis of metal chalcogenide NPs using the molecular precursor method 

This powerful synthetic method was first reported in 1993 for the synthesis of CdSe 

NPs by injecting (CH3)2Cd and tri-n-octylphosphine selenide (TOPSe) into hot (120–

300˚C) tri-n-octylphosphine oxide (TOPO).27 The resulting TOPO-capped NPs can be 

dispersed in non-polar solvents and are monodisperse and highly crystalline, exhibiting 

sharp band-edge emission. This synthetic method was one of the first that triggered a 

slew of other studies meant to finally rationalize the mystery of the controlled NP 

synthesis. Thus, the concept of “size distribution focusing”28 has been proposed to 

explain the formation of monodisperse NPs. According to this concept, the key for size 

control lies in having a fast nucleation event at high temperature, followed by slower 

growth of the particles at lower temperature. This is achieved by using the strong size-

dependent solubility properties of NPs in solution. Upon a rapid injection of the 

chalcogenide precursor into a hot (i.e. 300˚C) coordinating solvent containing the metal 

precursor, the local precursor concentration increases above the nucleation threshold, 

forming metal chalcogenide nuclei.29 The nucleation is then stopped by reducing the 

temperature (150–250˚C), and the precursors still present in solution serve for the slow, 

uniform growth of material onto the existing nuclei, resulting in particles of almost 

uniform size.30 

Usually, the high temperature synthesis of metal chalcogenide NPs uses long chain 

alkylphosphines and alkylphosphine oxides or amines as the coordinating solvents.27 

These species have a dual role in the process: that of providing the reaction medium, and 

at the same time acting as stabilizers, preventing the particle aggregation and passivating 

the surface dangling bonds.23 If solubility in polar solvents is desired, as required for 
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applications in biological media, the dynamic nature31 of the surfactant-NP interaction 

allows for the exchange of the non-polar surface group with polar ones, such as 

mercaptoundecanoic acid, mercaptoacetic acid, or dihydrolipoic acid, usually in base.32 

These particles have been proven to be less stable than their non-polar-capped brethren, 

and particle precipitation often occurs over time. 

Another step in the right direction in the synthesis of metal chalcogenide NPs came 

with the reported replacement of the highly toxic (CH3)2Cd by the air-stable CdO or 

Cd(OOCCH3)2.
33 The NPs produced thusly have comparable quality to those synthesized 

using (CH3)2Cd as the precursor, having good size dispersity, crystallinity and band-edge 

luminescence. This improvement has been widely adopted by the NP community and has 

spurred a multitude of studies on these systems. 

 

1.3 NP assembly methods 

As we stand today, nanomaterials have already been used in applications such as 

bio-imaging,6 photovoltaics,7-10 light emitting diodes, sensors,12-14 catalysts34 and 

thermoelectrics.35, 36 Many more applications of these materials are envisioned and the 

improvement of their performance by better control and understanding of the chemistry 

that occurs on the nano-scale is expected. To date, a lot of effort has been focused on the 

synthesis of various materials with nano-scale dimensions; controlling their size,27 

shape,37 solubility;38 and determining their properties. However, achieving the envisioned 

nanotechnology applications and performance requires going past the synthesis of 

discrete NPs and assembling them into 3D solid-state structures that maintain the size-

dependent optical, electronic and magnetic properties of the NP building blocks. To reach 
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this goal, various techniques such as the top-down (carving your way from macro- to 

nano-scale using lasers) or the bottom-up (assembling the NPs together using organic 

ligands as linkers or van der Waals interactions) methods have been used. The former 

suffers from the need for costly, sophisticated instrumentation, and the latter from 

reduced electronic transport through the network due to the presence of organic linkers or 

feeble assemblies that result from the weak van der Waals interactions. Since 3D 

assemblies of NPs are relevant to the dissertation research, the bottom-up assembly 

methods will be discussed in more detail in this section. Two of the most commonly used 

approaches are the layer by layer assembly and the self-assembly of close-packed NPs. 

The layer-by-layer (LbL) method was first described in 199139; it uses the 

alternating electrostatic deposition of polyanionic and polycationic species onto solid 

substrates. The same concept can be extended to the assembly of NPs using oppositely 

charged polyelectrolytes.40 The components of successive layers need not be the same but 

can be varied, resulting in assemblies with practically unlimited compositions. Also, the 

thickness and the function can be varied. The method is quite general and can be applied 

to most NP systems, as long as they can participate in the charge-overcompensation 

responsible for the electrostatic attraction between successive layers. One of the 

deficiencies of the LbL technique is that the minimum distance between two NP layers 

can not be decreased below the thickness of the polyelectrolyte used, which is at least 

several Ångstroms, thus limiting the efficiency of inter-layer interactions (i.e. electrical 

conductivity). To try and circumvent this limitation, the LbL technique was adapted by 

assembling NPs that were rendered with opposite charges by the stabilizer used for 

surface coating.41 This has resulted in the decrease of the distance between NP layers to 



www.manaraa.com

 

 

10

 

the extent of the thickness of the stabilizer shell, but it also decreased the stability of the 

assembly. 

Assemblies constructed by the self-organization of close-packed NPs use the slow 

evaporation of the NP solution solvent. By controlling the reaction parameters such as the 

choice of solvent, ambient temperature and humidity, assemblies consisting of colloid 

glasses with local order or superlattice structures with long range order can be obtained.42 

Just like in the LbL method, the separation between NPs is controlled by the thickness of 

the capping group layer, which presents the same drawbacks for applications that require 

charge carrier transport between particles. 

 

1.4 The sol-gel assembly: gels, aerogels, xerogels 

An alternate assembly technique is provided by the sol-gel method, by which NPs 

can be directly assembled, without any intervening ligand, to produce highly porous 

structures. Historically, this technique has been limited to insulating metal oxide 

materials,43 such as SiO2, Al2O3 and TiO2. Typically, the sol gel process involves the 

hydrolysis and condensation of a metal alkoxide (M(OR)n) precursor.44-46 In the 

hydrolysis step, the metal alkoxide precursor reacts with water to form alcohols and 

hydroxylated metal centers (Equation 1.1). In the second step, the hydroxylated metal 

centers undergo condensation, generating M-O-M bonds that connect the particles 

together, while eliminating water and alcohol (Equation 1.2). These bonds connect the 

nano-sized particles together, generating a wet gel network. 

(1) Hydrolysis 

M(OR)n + H2O → M(OR)n-1(OH) + ROH                                       (1.1) 
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(2) Condensation 

M-OH + M-OX → M-O-M + X-OH     (X= H or R)                       (1.2) 

 Silica is one of the most studied systems for the sol-gel chemistry. For the sol-gel 

synthesis of silica gels, the morphology of the final gel network is dependent on the 

reaction pH.45 When the reaction is catalyzed by an acidic medium (pH = 2–5), the 

hydrolysis step is favored and the rate determining step is the condensation process. This 

results in the simultaneous formation of a high number of oligomers, and the final gel 

network has a polymer-like morphology and low porosity.43 When a basic pH is used, the 

hydrolysis step becomes rate determining, yielding a gel that consists of an 

interconnected network of colloidal particles, with high porosity and higher surface area 

than the acid-catalyzed gels. 

 The wet gels obtained from the initial sol-gel reactions can be dried in one of 

three ways. If the drying occurs directly from the mother liquid (usually water or an 

alcohol), under ambient conditions, the capillary forces existent at the liquid-vapor 

interface act on the gel network pore walls, causing the collapse of the pore structure as 

the solvent evaporates. The final result is dense dry gel with reduced volume, surface area 

and porosity, which is designated as a xerogel.45 

 When maintaining the surface area and porosity of the wet gel is of interest, an 

alternative drying method can be used. This uses a supercritical fluid as the drying 

solvent. In this case, the liquid-vapor interface vanishes, as do the capillary forces acting 

on the pore walls. The result is a dry gel that maintains the volume, porosity and surface 
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area of the wet gel, and also exhibits very low density and is therefore known as an 

aerogel.45 

 Theoretically, pressure and temperature can be adjusted to bring most solvents in 

the supercritical state, which makes supercritical drying amenable for a variety of 

systems. In practice, though, there are safety issues related to some of the high pressures 

and temperatures required by certain solvents (i.e. ~250˚C and 5-8 MPa for alcohols or 

acetone). The harsh conditions also result in damage to the gel network, resulting in 

densification of the network, loss of stoichiometry or phase separation.45 Consequently, 

the use of CO2 as the supercritical fluid has become the main drying procedure. The main 

advantage of using CO2 is the fact that it is supercritical at relatively low temperatures 

(30–40˚C) and at similar pressures as the organic solvents (~ 8MPa). As a result, the final 

aerogel shows very little shrinkage when compared to the wet gel, and the porosity and 

surface area are maintained, also.  

 A third way of drying the wet gels is by first exchanging the mother liquid polar 

solvent with a non-polar one (e.g. hexane), followed by drying under ambient conditions. 

Due to the lower surface tension of the solvent, the collapse of the pore walls is 

minimized when compared to drying a polar-solvent filled gel. As a result, the final gel 

has a volume, porosity and surface area that is intermediate between those of an aerogel 

and a xerogel, being known as an ambigel. 

 

1.5 Previous studies on metal chalcogenide gels and aerogels 

Traditionally, the sol-gel chemistry employed in the synthesis of aerogel materials 

was limited to oxide and carbon-based compositions. Recognizing the distinct properties 
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of metal chalcogenides (i.e. semiconducting behavior with tunable band gaps in the 

visible range of the spectrum and soft Lewis basicity), researchers have investigated the 

expansion of aerogel chemistries to include such metal chalcogenide frameworks. 

Accordingly, in a direct analogy to the hydrolysis process used for metal oxide gel 

syntheses, thiolysis reactions between H2S and metal alkoxides, thiolates, or amides have 

been used to access metal chalcogenide gels.47-57 Suitable metal precursors for the 

thiolysis reaction are limited in number, and the materials obtained were mostly 

amorphous or poorly crystalline gels or precipitates (TiS2,
48 GeSx,

53, 56, 57 ZnS,54 LaS2,
50 

WSx,
55 NbS2,

49 and YSx
51). A GeS2.4 aerogel with an amorphous structure and high 

surface area (up to 755 m2/g) was obtained by supercritically drying a wet gel obtained 

via the thiolysis reaction.58 Nevertheless, the handling and synthetic requirements 

(complete exclusion of water or oxygen from the reaction) limits the extension and 

feasibility of this route for the development of other metal chalcogenide gels. 

An alternate method of generating metal chalcogenide gels first reported in 2000 uses 

condensation reactions between small anionic Zintl clusters (i.e. [Ge4S10]
4–) and linking 

transition metal cations (i.e. Zn2+, Cd2+, Hg2+ or Co2+).59 This approach has demonstrated 

considerable versatility, mainly due to the various available building blocks. 

Consequently, a new class of chalcogenide aerogels was obtained that exhibits 

characteristic properties (optical, catalytic, structural) that stem from the geometry of the 

Zintl clusters and the coordination mode of the metal used. To date materials such as 

Pt2[Ge4S10],
60 CoMoS4, NiWS4,

61 Zn2SnS4, Zn2Sn2S6, Zn2Sn4S10,
62 were synthesized and 

their applications for heavy metal remediation from aqueous solutions and 

hydrodesulfurization of fossil fuels, evaluated. The highly polarizable nature of the 
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chalcogenide framework, combined with the large surface area characteristic of aerogels 

have imparted better activity to the metal chalcogenide aerogels, when compared to 

traditional remediation or catalytic materials.60, 62 

Another approach for accessing chalcogenide aerogels uses condensation reactions 

between discrete metal chalcogenide NPs. In 1997, Gacoin and co-workers24, 63 reported 

the use of a two-step sol-gel synthesis for the preparation of CdS gels. The first step 

consisted of the synthesis of 4-fluorophenylthiolate (FPhSH) capped CdS NPs using the 

inverse micelle route. The colloidal gel formation was achieved by the controlled 

oxidation of the CdS NP sol with H2O2. The same group reported on the optimization of 

the gelation conditions to allow for the control of the reaction kinetics, yielding gel 

networks, as opposed to precipitates. They have also used 19F NMR analyses to confirm 

the fact that the organic capping ligands had no role in the particle-particle bonding.26 

The Brock group published the first report of a CdS aerogel64 using the two-step sol-

gel strategy developed by Gacoin and following it with supercritical drying. The same 

strategy was also used for the preparation of PbS, ZnS and CdSe aerogels.22 The resultant 

aerogels have high porosity and high surface area (up to 250 m2/g), comparable to the 

traditional silica aerogels. The aerogels have the characteristic base-catalyzed silica gel 

morphology, in which the crystalline metal chalcogenide NPs are assembled into a 3D 

connected network. Nevertheless, the opto-electronic properties of the aerogels show that 

the quantum confined nature of the NP building blocks is maintained even after the gel 

network is formed.22, 64 The optical features of the aerogels can be tuned by using 

precursor NPs of different sizes,25 by post-synthetic mild heat treatments,22, 64 or by 

tuning the density of the network.65 However, even though quantum confined, the 
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luminescent properties of the initial aerogels were poor, mostly due to the low 

crystallinity and surface defects inherent to the low temperature NP synthesis route used. 

The issue was addressed by investigating the use of a high-temperature arrested 

precipitation method33 for the synthesis of highly crystalline CdSe NP precursors. The 

aerogels formed by subsequent supercritical drying of these CdSe NPs showed a 

significant enhancement in their band-edge emission.66 Moreover, the PL was even 

further enhanced by surface passivation techniques using organic (i.e. pyridine wash of 

wet gels) or inorganic (ZnS capping shell treatment of the CdSe cores)66, 67 methods. The 

effect of the NP precursor morphology68, 69 (sphere, rod, branched and hyperbranched) 

and network density65 (tuned by varying the amount of oxidizing agent used) on the final 

structural and optical properties of the resultant aerogels was also investigated. Recently, 

the two-step sol-gel methodology has been expanded to metal tellurides. Accordingly, 

aerogels of CdTe,70, 71 PbTe and Bi2Te3,
35, 36 were synthesized. Also, the exploration of 

possible applications was addressed by evaluating the ability of CdSe aerogels to act as a 

sensor for amines72 and that of PbTe/Bi2Te3 aerogels for thermoelectric materials.35, 36 

 

1.6 Cation exchange reactions in bulk and nano-materials 

Cation-exchange reactions are well known and involve the replacement of a metal 

cation in a solid with a mobile cation in solution.73 The general process for the cation-

exchange reaction of metal chalcogenides can be represented by equation 1.3 

 

M1A(s) + M2
n+

(solv.)
 → M2A (s) + M1

m+
(solv.)                                                               (1.3) 

where M1 = Zn, Cd; A = S, Se, Te; M2 
n+ = an incoming metal cation. 
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Figure 1.2. Reaction coordinate representing the cation exchange reaction in bulk and in 

nanoscale materials 

 

The application of cation exchange reactions, though thermodynamically favored 

when exchangers with appropriate solubility product constants are used, is practically 

impeded in bulk materials by the slow kinetics that arise from the high activation energy 

demanded for the ion diffusion in the solid lattice.74 A decrease in particle size causes the 

lowering of the activation energy barrier, allowing for fast transformations in NPs (Figure 

1.2).75 Accordingly, new material compositions have been prepared in thin film and NP 

form using cation exchange reactions. Specifically, there are reports of ZnS films being 

cation exchanged to yield materials including SnS, CuS and Bi2S3
76 and even very 

interesting ternary compositions like CuInS2,
77 which is widely desired for applications in 

photovoltaic cells. Also, binary cadmium sulfide and selenide NPs have been transformed 

by cation exchange with solutions containing Ag+ or Cu+.74, 75 
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Recently, our group has extended the cation exchange reaction previously 

observed in NP solutions to CdSe gels78 which were easily converted into Ag2Se, PbSe 

and CuSe simply by immersing an already gelled CdSe wet gel monolith in the cation 

solution of choice. The exchange resulted in complete conversion, while the monoliths 

remained intact. 

 

1.7 Water remediation 

The increase in the industrialization level of the world, beneficial in so many 

ways, also comes with a slew of drawbacks. One of the most prominent and pressing 

issues is the environmental deterioration that accompanies industrial processes.79, 80 For 

example, the heavy metal content in the aquatic ecosystems increases constantly from 

sources such as domestic wastewater effluents (As, Cr, Cu, Mn and Ni), coal-burning 

power plants (As, Hg and Se), metallurgy (Cd, Ni, Pb, Mo, Se, and Sb) and the dumping 

of sewage sludge (As, Mn and Pb).79 Heavy metal contaminants are especially 

detrimental to the environment since they do not degrade over time and thus need to be 

physically removed from the contaminated samples. At the same time as industrial 

chemical use is rising, so is the demand for clean water. Accordingly, regulatory agencies 

in Europe and North America are imposing stricter rules for contaminated water 

discharge levels. Currently, the discharge levels are at parts per billion (ppb) but are 

expected to be reduced to parts per trillion (ppt) in the very near future, to counteract the 

overall increase in the pollution sources. 

Current methods used for heavy-metal removal from water, such as precipitation 

as hydrated metal oxides or hydroxides, usually yield large amounts of contaminant-
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containing sediments, formed due to flocculation or coagulation.81 Moreover, even after 

precipitation, the concentration levels of some heavy metals are well above those 

considered to be safe and acceptable today (i.e. the Environmental Protection Agency’s 

15 ppb action level for Pb or the maximum allowed concentration of 2 ppb Hg in 

drinking water). Ion exchange provides a way to remove all ions of interest from a 

solution, while at the same time physically separating the contaminant.81  

Water remediation processes using ion exchange materials are dominated by 

oxidic inorganic clays82, 83 or zeolites.84 These materials have complex compositions that 

only allow for a limited theoretical cation exchange capacity (i.e. up to 1 mmol of 

exchangeable cation/g of exchanging material). Also, due to their mostly oxidic 

framework, they suffer from low binding affinity and selectivity for heavy metals. To 

improve the exchange capacity and affinity towards heavy metals, new materials have 

been developed by functionalizing the oxidic materials with softer Lewis-basic thiol 

groups.85, 86 The functionalization supplements the ion exchange ability with 

chemisorption at the surface thiol groups, resulting in improved affinity (up to 2 mmol/g 

exchanger) and selectivity for mercury, but not so much for other heavy metals. Sulfide-

based ion exchange materials should be ideal candidates for heavy-metal remediation 

applications due to their soft basic frameworks, which should show increased affinity 

towards soft Lewis acids (heavy metal ions). Surprisingly, there are just a few reports60, 

62, 87-89 on the soft heavy metal exchange properties of metal sulfides (typically layered 

phases), but they all show improved affinity and capacities. Thus, the soft Lewis base 

characteristics of mineral sulfides such as FeS2, results in augmented exchange with soft 

Lewis acids; (~5 mmol Cd/g exchanger, but only 0.7 mmol Pb/g).90-92 Because exchange 
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is limited to the surface, the theoretical exchange capacity (~8 mmol/g) is not realized. A 

material capable of sequestering the heavy metals via chemical exchange throughout its 

structure, in a mole-to-mole fashion, should be better suited for remediation of 

contaminated effluent streams using fixed-bed adsorption technologies. 

 

1.8 Thesis statement 

Our research group has extended the use of sol-gel chemistry to semiconducting 

metal chalcogenide aerogels,22, 25, 64, 93 thus opening an avenue for applications that 

require electrical conductivity through the network. The assembly is achieved by the 

controlled oxidation of thiolate-capped metal chalcogenide NPs, resulting in highly 

porous 3D architectures that retain the quantum confined properties of the NP building 

blocks. The porosity of the network is beneficial for applications that require direct 

accessibility to the NP surface, such as sensing or catalysis. At the same time, the direct 

connectivity between particles should provide enhanced electrical conductivity and thus 

be beneficial for applications in PV devices, where the conductivity is limited by 

interparticle electron hopping. 

A key factor impacting electrical transport in the nanostructure is expected to be 

the chemical nature of the inter-particle interfaces. Accordingly, in the dissertation 

research, I aimed to uncover the mechanism of metal chalcogenide gel formation by 

conducting a systematic investigation of the chemical changes occurring in various stages 

of the gel network formation process. Previous results94 suggest that the gelation of 

cadmium selenide particles occurs via an oxidation reaction and the formation of covalent 

di-selenide bonds bridging the NPs and that a reducing agent is required to break the 
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bonds holding the network together, thus dispersing the gel. A series of physical and 

chemical techniques will be used to unequivocally probe the exact nature of the chemical 

bonds that allow for the NP assembly and also the generality of the process with respect 

to other metal chalcogenide systems. 

In addition to the chemistry of the particle-particle interfaces, chemical 

composition is also important for tuning parameters relevant to optical absorbance 

characteristics, charge separation, charge and ion transport. The typical aerogel synthesis 

involves two distinct processes: NP synthesis and oxidation-induced assembly. 

Therefore, every new material requires the development of a new set of non-trivial 

synthesis and optimization protocols for each step, thereby slowing the generation of new 

compositions. Cation exchange is a well-known chemical process that should allow for 

simple modifications of chemical compositions of already gelled networks. As previously 

mentioned, the cation exchange process, even though thermodynamically favored when 

systems with appropriate solubility constants are used, is impeded in bulk materials by 

the slow kinetics of cation diffusion through the crystal lattice. In NP systems, the size of 

the particles is similar to the reaction front size,95 and the reaction occurs at much faster 

rates. In the dissertation research, I aimed to use the knowledge we have generated for 

synthesizing certain metal sulfide gels (i.e. ZnS) and combine it with the easy cation-

exchange chemistry previously demonstrated in our group for CdSe gel systems78 to 

achieve new binary, ternary and even quaternary sulfide gel materials. Specific phases to 

be targeted are binaries Ag-S, Pb-S, Cd-S, Cu-S; ternaries CuInS2, and quaternary 

CuZnInS2. Binary phases were chosen for comparison to previously studied selenides, 



www.manaraa.com

 

 

21

 

whereas the ternary and quaternary phases aim to show the complexity that can be 

obtained and also generate materials of interest for solar cell applications  

Understanding of kinetics and thermodynamics of ion exchange is also relevant to 

the use of chalcogenide gels for removal of heavy ions from contaminated water sources. 

The cation exchange process occurring in the soft metal sulfide aerogels, combined with 

the high porosity and high surface area inherent to aerogels, should allow for increased 

heavy metal removal capacities when compared to the reported oxidic and even layered 

sulfide materials, where most of the removal occurs through physisorbtion. Assuming 

that the cation exchange process will occur in a mole–to–mole ratio, a calculated capacity 

of 2127 mg Pb/ g ZnS aerogel is predicted. This is almost an order of magnitude higher 

than the highest capacities reported to date (319 mg/g for a layered sulfide material88 or 

365 mg/g for thiol functionalized oxidic materials85 ). Accordingly, in the last part of the 

dissertation research I used the cation exchange process to conduct a quantitative 

analytical study of the ability of ZnS aerogels to remove hazardous heavy metals from 

aqueous solutions. Heavy metal cations such as Pb2+ and Hg2+ will be investigated at 

environmentally relevant concentrations and compositions to determine the suitability of 

the ZnS aerogel materials to be used as heavy-metal filtering materials. 

The thesis statement is summarized in Figure 1.3.  
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Figure 1.3. Dissertation research thesis statement summary 

 

 The dissertation thesis is organized as follows: 

– Chapter 2 presents the experimental methods and relevant characterization techniques 

used; 

– Chapter 3 describes the study of the mechanism of metal chalcogenide NP gel 

formation; 

– Chapter 4 discusses the experimental and mechanistic studies of the cation exchange 

reaction for zinc sulfide gel networks; 

– Chapter 5 documents the suitability of ZnS aerogel materials for use as heavy metal 

remediation materials; 

– Chapter 6 summarizes the conclusions drawn and presents a possible direction for 

future studies. 
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CHAPTER 2 

EXPERIMENTAL AND CHARACTERIZATION TECHNIQUES 

 

 Metal chalcogenide aerogels and xerogels are formed by sol-gel assembly of 

precursor NPs, followed by supercritical or bench top drying, respectively. The NPs and 

gels are characterized by powder X-ray diffraction, transmission electron microscopy, 

energy dispersive spectroscopy, X-ray photoelectron spectroscopy, UV-visible absorption 

spectroscopy, photoluminescence spectroscopy and nitrogen adsorption/desorption 

surface area analysis. The heavy metal concentrations were measured using inductively 

coupled plasma mass spectrometry. This chapter will present the materials, synthetic 

conditions, and characterization techniques used in synthesizing and characterizing the 

investigated nanomaterials. 

 

2.1 Synthetic Methods 

2.1.1 Materials 

Bis-(2-ethylhexyl) sulfosuccinate sodium salt (AOT, 96%), cadmium nitrate 

tetrahydrate (99%), oleylamine (OA), sodium borohydride (NaBH4, 98+%), silver nitrate 

and triethylamine (TEA, 99%) were purchased from Acros. Trioctylphosphine oxide 

(TOPO, 90%), cadmium oxide (99.99%), selenium powder (99.5%), trioctylphosphine 

(TOP, 90%), 11-mercaptoundecanoic acid (MUA, 95%), tetramethylammonium 

hydroxide pentahydrate (TMAH, 97%), ethylenediamine (99%), acetone, 4-

fluorobenzenethiol (FPhSH, 98%), 2-mercaptoethanol (ME) and tetranitromethane 

(TNM) were purchased from Aldrich. Sodium selenide (metal basis 99.8 %) and n-
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tetradecylphosphonic acid (TDPA, 98%) were purchased from Alfa-Aesar. Lead nitrate 

(99%), cupric nitrate tetrahydrate (99%), ethyl acetate, ethyl ether, 3% aqueous hydrogen 

peroxide, regent grade methanol, absolute ethanol, butanol, toluene, pyridine and n-

heptane were purchased from Fisher. All the chemicals were used without further 

purification. 

 

2.1.2 Synthesis of Metal Chalcogenide NPs and Gel Networks 

 2.1.2.1 Synthesis of CdSe NPs using the high temperature route 

 The synthesis of the CdSe NPs and gels has been accomplished using methods 

previously developed by our group.66 In a typical synthesis (Scheme 2.1), highly 

coordinating surfactant ligands (i.e. TOPO, TOP) are used to generate TOPO-capped 

CdSe NPs from the reaction of CdO and Se at high temperature (280°C). These NPs are 

then complexed with thiolate ligands (i.e. MUA); TOPO/TOP capping groups are 

exchanged and thiolate-capped CdSe NPs are generated. These are then dispersed in 

methanol to yield an orange-red colored CdSe sol. 
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Scheme 2.1. Synthesis of CdSe NPs and gels using the high temperature route 

2.1.2.2 Synthesis of ZnS NPs using the room temperature route 

Thiolate-capped ZnS NPs were prepared using an established room temperature 

inverse micellar route optimized by our group.96 The synthesis involves the use of inverse 

micelles of aqueous metal ion and chalcogenide precursors in an n-heptane/ sodium bis-

(2-ethylhexyl) sulfosuccinate (AOT) mix (Scheme 2.2). The water to surfactant ratio (W), 

which controls the micelle size, can be controlled in order to obtain various sized NPs. 

The thiolate-capped NPs can subsequently be oxidized to form gels. The method can be 

extended easily to other metal chalcogenide systems, such as CdS or CdSe. 
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Scheme 2.2. Illustration of MQ (metal chalcogenide) NP and gel formation using the 

inverse micellar route. This procedure can be used for the syntheses of ZnS, CdS, and 

CdSe. (SCD= supercritical drying) 

 

 2.1.2.3 Formation of 3D NP gel networks  

The addition of a chemical oxidizing agent (i.e. tetranitromethane, TNM or 

hydrogen peroxide, H2O2) to the NP sol (obtained from either the high or room 

temperature synthetic routes) results in the controlled oxidation of the surface-bound 

thiolate groups, yielding a solvent-swollen polymeric wet gel network within a couple of 

hours. The wet gels are then aged for two days under ambient conditions to form 
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monolithic wet gels, and the byproducts of the oxidation process are removed by 

exchanging the solvent with acetone 4-5 times over 2-3 days. 

2.1.3 Supercritical Fluid Drying for Aerogel Formation 

 The sol-gel synthetic method described above yields metal chalcogenide wet gels 

consisting of interconnected particles and polar-solvent-filled pores. If the wet gels are 

allowed to dry on the bench top, under ambient conditions, the capillary forces between 

the evaporating solvent and the pore walls cause the pores to shrink, drastically reducing 

the volume of the monolith to less than 10% of the wet gel volume. The materials formed 

in this way, with a resulting decreased porosity and surface area, are termed xerogels. For 

applications in which the NP interconnectivity is important, but the porosity and surface 

area are not, xerogels are preferred. 

 If preserving the high porosity and surface area present in the wet gels is desired, 

the drying is achieved using a supercritical fluid. Supercritical fluids exist above a certain 

critical temperature and pressure (Figure 2.1) and are characterized by the fact that the 

gas/liquid phase boundary disappears. This creates conditions in which the capillary 

forces between the fluid and the pore walls are non-existent, allowing for the monolith 

volume, porosity and surface area to be almost completely maintained during drying. 

Historically, supercritical alcohols were used to dry the first silica aerogel monoliths, but 

the pressure and temperature requirements posed safety concerns.97 CO2 has a much more 

user-friendly critical point pressure and temperature and is the fluid used for this 

dissertation research. The phase diagram of CO2 is illustrated in Figure 2.1. 
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Figure 2.1. CO2 phase diagram (adapted from Lieu98). TP = triple point; CP = critical 

point 

 

The supercritical CO2 drying technique has been previously reported45 for the 

formation of various aerogels. In the dissertation research, the procedure involves the 

replacement of the wet gel solvent (i.e. acetone) with liquid CO2 in the pressurized vessel 

of a SPI Dry model critical point dryer at 19˚C and 65 atm. The chamber is drained and 

refilled 3-4 times over a 4 hour period, to ensure that the acetone in the wet gel pores is 

completely removed and replaced by the liquid CO2. The temperature is then raised to 

39˚C, which causes the pressure to also rise to ~100 atm and the CO2 to reach the 

supercritical fluid state. The gel is kept in this environment for one hour, to ensure the 

complete gas to supercritical fluid conversion. Afterwards, the chamber pressure is 

vented slowly, while keeping the temperature at 39˚C. The temperature of the drying 

chamber was controlled using a Fisher Scientific ISOTEMP 10065 water circulator. This 

drying method ensures that the porosity and high volume of the wet gel are maintained. 
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2.2 Characterization Techniques 

2.2.1 Powder X-Ray Diffraction (PXRD) 

 X-ray diffraction is a technique that uses the wave-like character of 

electromagnetic radiation to investigate the structure of solid samples. When a wave 

interacts with gratings with spacings similar to the wavelength, diffraction occurs. By 

using X-ray radiation, whose wavelengths are on the order of 1Å, atomic distances in 

solids, which are of the same order of magnitude, can be probed.1 

 The most common way to produce X-rays for analytical work is to first generate 

an electron beam by heating up a filament; this electron beam is accelerated and strikes a 

metal target (copper is most widely used). As illustrated in Figure 2.2, the incident 

electron beam causes electrons from inner K shells to be removed, and so electronic 

vacancies are created. Electrons from outer shells can then relax into these vacancies, 

emitting X-ray photons. The most intense of these radiations is the Kα (corresponding to a 

transition from the L to K shells), making it the most suitable for use in analytical 

processes. For Cu metal, the Kα line has a wavelength of 1.54 Å, appropriate for probing 

angstrom-scale atomic distances.1  
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Figure 2.2. Schematic representation of X-ray generation as an electron from the L shell 

relaxes into the hole created when an electron from the K shell is ionized by an incident 

electron beam (adapted from West1) 

 

 The interatomic spacing in solids is on the order of 1 Å ; therefore, a crystal can 

be viewed as a 3D diffraction grating for X-rays. Diffraction maxima can be used in an 

optical diffraction experiment to calculate the spacing of the lines on the grating; 

similarly, measuring the separation of the X-ray diffraction maxima from a crystal 

provides information about the size of the unit cell and the intensities of the diffracted 

beams correlate to the different arrangement of atoms within the cell. 

When an X-ray beam strikes a crystal surface at some angle θ, part of it is 

scattered by the interaction with the electrons of the atoms in the surface layer. The 

portion of the beam that is unscattered reaches the second layer of atoms where again a 

part is scattered (Figure 2.3). When the scattering atoms are distributed in a highly 
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regular way (crystalline solid) at distances similar to the radiation wavelength, diffraction 

occurs. The diffracted beams can interfere constructively or destructively. 

 

Figure 2.3. Schematic representation of X-ray diffraction by atomic crystal planes and 

Bragg’s law (adapted from Skoog99) 

 

W. L. Bragg derived the condition for constructive interference to occur from X-

rays scattered from a set of parallel lattice planes. Considering the two incident beams 

shown in Figure 2.3, AB and A’B’, scattered by two consecutive atom planes at points B 

and B’, constructive interference will occur when the extra path travelled by the electrons 

in A’B’C’ relative to ABC, equals an integer number multiple of the beam’s wavelength, 

λ. Considering the geometry of the system, this can be expressed as Equation 2.1, 

2d sinθ = nλ                                            (Equation 2.1) 
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where d is the interatomic plane spacing, θ is the incident angle, and n is an integer. This 

condition for constructive interference is known as Bragg’s law, and it gives the angles at 

which the diffracted beams can occur. 

 In powder diffraction, monochromatic X-rays are used to probe a powder sample 

that contains crystals present in all possible orientations. Thus, all allowed reflections can 

be identified with no sample rotation. Often, the detector is rotated around the sample and 

a full diffraction pattern can be obtained by plotting the intensities of different diffraction 

planes as a function of 2θ. The position of the peak (2θ) is determined by the size and 

shape of the unit cell; the peak intensity is dependent on the atomic number (i.e. the 

atomic form factor, proportional to the total number of electrons in an atom) and position 

of the atoms (the structure factor) in the cell.1 This results in unique diffraction patterns 

that are dependent on the crystal structure and material composition, which can be 

compared with those in crystallographic pattern libraries. 

 Just as the peak position and intensity provide information about the crystal 

structure and chemical composition of the sample, the peak broadness can give an 

indication about the crystallite size. In a bulk material, the presence of a large number of 

atoms allows the cancellation of partial interferences and results in very sharp diffraction 

peaks. When the crystal domain size decreases, as is the case in nanomaterials, the 

limited number of atoms in each orientation causes the broadening of the peaks. The 

Debye-Scherrer equation (Equation 2.2) relates the width of a peak to the crystallite size t  

t = 0.9 λ/βcosθ…………………………..(Equation 2.2) 

where λ is the incident X-ray wavelength (1.54 Å for Cu Kα radiation), and β is the full 

width at half maximum (in radians) of the peak at the angle 2θ. This equation can be used 
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to estimate the NP size, but it should be used with caution, since it makes the assumption 

that only size effects are responsible for the peak broadening. Other factors, such as 

defects in the crystal lattice, can also cause peak broadening.  

In this dissertation research, a Rigaku RU 200B X-ray diffractometer with a Cu 

Κα rotating anode source was used for PXRD measurements. Powder samples were 

affixed to a zero background quartz holder using a small amount of grease. Data were 

collected in the 20–80˚ 2θ range, using 40 kV voltage and 150 mA current intensity. The 

diffraction patterns obtained were indexed by comparison to the International Center for 

Diffraction Data (ICDD) Powder Diffraction File (PDF) database (release 2000). An 

example of a PXRD pattern for a PbS NP sample is shown in Figure 2.4.
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Figure 2.4. PXRD spectra of PbS NPs. The black vertical lines correspond to reflections 

from the specified (hkl) atomic planes and can be matched with the cubic PbS phase. 

Using the Debye-Scherrer equation on the (220) peak at 2θ = 43˚, a crystallite size of 

10.6 nm can be calculated. The peak broadening is an indication of the small crystallite 

size 

 

    2.2.2 Transmission Electron Microscopy (TEM) 

In spectroscopic methods, the sample of interest is irradiated with a primary beam 

that can be constituted of photons, electrons, ions, or neutral molecules. The interaction 

of this primary beam with the sample generates a secondary beam, which can also consist 
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of photons, electrons, ions, or molecules from the sample. The secondary beam does not 

necessarily consist of the same type of particles as the primary beam. The secondary 

beam is then analyzed by different detectors, providing information about the sample. 

Figure 2.5 illustrates an example of spectroscopy in which the primary beam 

consists of electrons. Through scattering or emission, secondary beams of electrons or 

photons are generated that can be analyzed in techniques such as Energy Dispersive 

Spectroscopy (EDS) or Scanning Electron Microscopy (SEM). 

 

Figure 2.5. Schematic representation of the different processes occurring when an 

incident beam of electrons interacts with a sample (adapted from Egerton100) 

 

If the incident electron beam has high enough energy (120–400 keV), and a very 

thin (250–500 nm) sample is used, after interacting with the sample, some of the 

inelastically and elastically scattered electrons can tunnel through, and can be imaged on 

a fluorescent screen positioned on the other side. This is the principle behind 
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Transmission Electron Microscopy (TEM), which allows the collection of information 

regarding the sample morphology (size and shape). The advantage in using the wave 

nature of electrons to image samples, when compared to light in the visible range used in 

optical microscopy, is that due to wavelengths on the Angstrom scale, electrons can be 

diffracted by atomic planes, allowing imaging with very high resolution (<1 nm).100 On 

the other hand, since electrons are strongly interacting, the sample analysis needs to occur 

under vacuum, making electron microscopes highly expensive.  

For imaging to be possible the transmitted electrons need to be focused; this is 

achieved by using the fact that electrons are negatively charged particles and so, when 

moving in a magnetic field, the Lorenz force exerted on the electron can be used to 

deflect it, effectively acting as a lens that focuses the beam on the screen. There are two 

basic modes of imaging in TEM: bright field and dark field. A bright field image is 

collected when an objective aperture centered about the optic axis of the TEM absorbs all 

the scattered electrons, allowing only the direct beam to pass through the sample. The 

parts of the field of view that contain no or less sample form from electrons that are not 

scattered, and so they appear brighter than the specimen, hence the name, bright field 

imaging. In dark field imaging, the objective aperture is displaced horizontally to block 

the central undiffracted beam of electrons and, in turn, allow a diffracted beam to be 

transmitted. This is usually achieved by tilting the illumination beam and using the 

aperture to select the desired Bragg reflection. In this imaging mode, the strongly 

diffracting regions appear bright, while the parts that contain no diffracting specimen are 

dark.99, 100 
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In the dissertation study, TEM analyses were conducted in the bright field mode 

using a JOEL FasTEM 2010 HR analytical electron microscope operating at an 

accelerating voltage of 200 kV. Samples were prepared by adding a drop of the NP 

solution or aerogel that was sonicated in acetone to a carbon-coated copper or nickel 

TEM grid. The samples were allowed to dry under ambient conditions before analysis. 

As an example, TEM images of a CdSe aerogel (Figure 2.6) show that the material 

consists of an interconnected network of almost spherical CdSe NPs. Meso- (2-50 nm) 

and macro (>50 nm)-pores with a wide range of diameters can be observed throughout.  

 

Figure 2.6. TEM images of a CdSe aerogel obtained using bright field imaging. The dark 

features are a result of the electron beam being blocked by the sample, while the light 

areas are pores, where the electrons were transmitted through to the detector. Left image: 

Overall gel morphology showing macro- and mesopores; Right image: High resolution 

TEM (500,000 x magnification) showing individual CdSe NPs (lattice fringes —resulting 

from phase contrast imaging of ordered crystalline planes— are visible) 
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 2.2.3 Energy Dispersive Spectroscopy (EDS) 

 EDS analyzes the X-rays generated by the interaction of an incident beam of 

electrons with the sample surface. The X-ray generation occurs through the same process 

illustrated in Figure 2.2, when an electron from an inner shell is ionized through the 

interaction with an incoming beam of electrons, leaving behind a vacancy that is filled by 

an electron from an outer shell. Due to characteristic electrostatic interactions, these 

transitions occur at energies that are specific for each atom, allowing them to be 

identified. EDS detectors operate at liquid nitrogen temperature and measure the energy 

of the emitted X-rays, allowing for the determination of the elements present in the 

sample. The atomic ratios of the elements can also be calculated by comparing the peak 

areas of the different elements. The technique is more sensitive to heavier elements 

(atomic number Z>11), due to the high background noise inherent in the low energy 

region. Usually, EDS detectors are coupled with another instrument, such as TEM or 

SEM. With its higher accelerating voltage, TEM/EDS is capable of detecting K-shell X-

rays of more elements than SEM/EDS. 

 In the dissertation study, the EDS unit (EDAX, Inc.) attached to the TEM 

instrument described in Section 2.2.2 was used for the determination of elemental 

composition of NPs and aerogel samples. The sample preparation is the same as that used 

for the TEM grids. The data collected was analyzed using the EDAX Genesis software. 

 

  2.2.4 X-ray Photoelectron Spectroscopy (XPS) 

XPS is a surface analysis technique that uses high energy X-ray photons to probe 

the chemical composition and oxidation state of materials in gaseous, solid and liquid 
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state.99 Usually, a magnesium or aluminum target is used to generate an X-ray beam 

which, upon impinging on the surface of the sample, ejects electrons from different 

electronic levels. The physical process involved in XPS is schematically represented in 

Figure 2.7. In principle, a photon of a monochromatic X-ray beam of known energy 

hdisplaces an electron e– from an orbital. The reaction can be represented as  

A + h  A+ * + e– 

where A is an atom, molecule or ion and A+ * is an excited species with a charge one 

higher than A. 

 

Figure 2.7. Schematic representation of the XPS process (adapted from Skoog99) 

 

 The detector is measuring the kinetic energy KE of the ejected electron. For a 

known value of the incoming photon’s energy, the binding energy BE of the emitted 

electron can be calculated by using Equation 2.3 
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BE = h – KE – W                               (Equation 2.3) 

where W is the work function of the spectrometer, which corrects for the conditions under 

which the generation of the electron and the measurement take place. The binding energy 

of the electron is characteristic of the atom and orbital from which the electron was 

emitted. Using a magnesium or aluminum Kα source, all elements except hydrogen and 

helium emit core electrons, and the chemical composition of the sample surface can be 

identified because the binding energies are characteristic of the elements probed. Even 

though the incident beam of high energy photons has a high penetration depth (about 104 

Å), the photoelectrons produced can not pass through more than a few to 50 Å, making 

XPS a true surface analysis technique. 

 Besides providing qualitative data about the chemical identity of the atoms on the 

sample surface, the binding energy is also sensitive to the chemical environment of the 

atom. For example, if the number of valence electrons and the type of bonds they form 

vary, this influences the binding energy of the core electrons. Consequently, a change in 

the oxidation state of the probed atom results in a change in the binding energy peak 

position. This chemical shift manifests itself through higher binding energies 

corresponding to more positive atom oxidation states, since, as electrons in the outer 

shells are removed as the atom gets oxidized, the core electrons are attracted more 

strongly by the nucleus, and thus they feel a higher binding energy. 

In this dissertation study, XPS was performed using a PerkinElmer PHI 5500 with 

a monochromatic Al Kα X-ray radiation source (1486.6 eV) and an Auger-Scan system 

control (RBD Enterprises, Bend, OR). The samples to be analyzed were pressed onto a 

piece of conducting indium foil, to avoid surface charging. The binding energy scales 
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were adjusted using the C (1s) peak of graphite at 284.6 eV. The peak positions were 

obtained by fitting each of the peaks using a Gaussian/Lorentzian curve fitting program 

provided by the RBD analysis software. A typical survey spectrum obtained from a 

MUA-capped CdSe NP sample is shown in Figure 2.8. 

0 200 400 600 800 1000 1200
0

200

400

600

800

Se 3d

S 2s
P 2p

Se 3p

C 1s

Cd 3p

O 1s

Cd 3d

C
o

u
n

ts
 (

ar
b

it
ra

ry
 u

n
it

s)

Binding Energy (eV)

 

Figure 2.8. XPS survey spectra of MUA capped CdSe NC precursors showing the 

presence of Cd, Se, S and P from the NPs and C and O from NP surfaces and from 

adsorbed gaseous molecules 
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2.2.5 UV-Visible Absorption Spectroscopy (UV-vis) 

UV- visible absorption spectroscopy is a technique used to characterize the 

optical properties of materials interacting with electromagnetic radiation with 

wavelengths within the 200–800 nm range. When light with energy in this range interacts 

with absorbing samples, electronic transitions between allowed states can occur. During 

these transitions from a lower to a higher energy level, energy is absorbed, and the 

sample appears colored and exhibits an absorption band in the UV-vis spectrum. 

Materials in which these transitions occur are said to be, or contain, chromophores. In 

UV-vis, the absorbance A or transmittance T of solutions contained in transparent cells of 

path length b cm is measured. Within certain limits, the concentration c of an absorbing 

species is linearly related to the absorbance, as illustrated by Beer’s law (Equation 2.4) 

A = εbc                                               (Equation 2.4) 

where ε is the molar absorptivity coefficient of the species, and is characteristic for the 

absorbing material. 

 In semiconducting materials, an electron from the conduction band can absorb a 

photon with energy equal to or greater than the band gap energy, and be promoted into 

the conduction band. This gives rise to an absorption edge. In the case of semiconducting 

quantum dots, the bandgap is very sensitive to the particle size, due to the quantum 

confinement effect (Chapter 1, Section 1.1). Basically, as the particle size decreases, the 

bandgap increases. This phenomenon translates to a shift in the position of the absorption 

edge: as the particle size decreases, the absorption edge (and peak) position shift to 

higher energy (blue shift). The dependence of the NP bandgap energy E(R) with the 
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decrease in optical chromophore size R can be described using the mass approximation 

model proposed by Steigerwald and Brus,3 and can be expressed as Equation 2.5 

E(R) = Eg + (ħ2π2/ 2R2 ) (me
–1 + mh

–1) – (1.8e2 / εR)          (Equation 2.5) 

where Eg is the bulk badgap energy; ħ = h/ 2π, where h is Plank’s constant; me and mh are 

the electron and hole effective masses, respectively; e is the charge of the electron; and ε 

is the optical dielectric coefficient of the bulk material. 

 In this research, UV-vis spectroscopy was used to determine the optical bandgap 

and chromophore size of semiconducting metal chalcogenide NPs. Optical absorption 

measurements of NPs were obtained using a Hewlett-Packard (HP) 8453 

spectrophotometer. The NPs were dispersed in an appropriate solvent (i.e. acetone, 

methanol, toluene, depending on the capping agent polarity) and the solutions were 

analyzed in the region from 200–800 nm. The bangap of the NPs was calculated by 

converting the absorption band onset wavelength value into energy. This value was then 

used in the mass approximation model to calculate the optical chromophore size. 

 For example, for the absorption onset observed in Figure 2.9 (547 nm), the 

corresponding band gap value is 2.25 eV (bulk CdSe band gap is 1.73 eV) and the 

calculated chromophore size is 4.7 nm.  This is consistent with the widening of the band 

gap of semiconducting NPs due to quantum confinement effects. 
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Figure 2.9. UV-Vis spectrum of TOPO- (blue) and MUA-capped (red) CdSe NPs, 

synthesized using the high temperature method 

  

 2.2.6 Photoluminescence Spectroscopy (PL) 

 After an energy absorbance event, the absorbing species (i.e. an electron) can 

relax back to a lower energy level by emitting energy in the form of light. This process is 

called photoluminescence and it is widely used to study the optical properties of 

semiconducting materials. A schematic illustration of some of the radiative transitions 

possible for electronic relaxations is represented in Figure 2.10. Fluorescence occurs 

when relaxation occurs from an excited singlet state (S1, S2 or S3 in Figure 2.10) to the 

ground singlet state. This is an allowed transition and it has a high occurrence probability, 

and thus high signal intensity. Usually the emission occurs at a lower energy than that of 

the absorbed light, the difference being accounted for by vibrational relaxations. This 

shift towards lower energies is termed the Stokes shift. Fluorescence has a short lifetime 
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(10–9–10–7 s). The excited electron can reverse its spin in a process called intersystem 

crossing, and populate an excited triplet state energy level, which is lower in energy than 

the excited singlet states. This process has a higher probability to occur if the vibrational 

levels of the singlet and triplet states overlap. When the light is emitted upon relaxation 

between an excited triplet state and the ground singlet state, another radiative process 

called phosphorescence occurs. The probability of this process occurring is lower than for 

the fluorescence, but it has a longer lifetime (10–3–102 s). 

As previously mentioned, semiconducting NPs can absorb light with energy equal 

to or higher than that of the band gap, causing an electron from the valence band to be 

promoted into the conduction band. Upon relaxation, energy can be emitted as light. The 

quantum confinement effect present in semiconducting NPs can be observed in PL 

spectra, too, and it is expressed through the same peak shift to higher energies as the 

particle size decreases, as is observed in UV-vis spectroscopy. The Stokes shift is also 

observed. The presence of dopants, impurities or defects can cause electron or hole trap 

states, which in turn can generate emissive radiation occuring at energies much lower 

than the band gap energy. 
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Figure 2.10. Schematic representation of the radiative transitions probed by PL 

spectroscopy (adapted from Skoog99) 

 

In the dissertation research, a Cary Eclipse (Varian, Inc.) fluorescence 

spectrometer was used to study the emission properties of the metal chalcogenide NPs. 

NPs were dispersed in appropriate solvents (toluene for TOPO-capped and methanol for 

MUA-capped NPs) and a 1 cm quartz fluorescence cuvette was used to collect spectra. 

Emission properties of TOPO and MUA- capped CdSe NPs were investigated 

using photoluminescence spectroscopy (PL). The NPs exhibit a band-edge emission at 

545 nm and a broad trap state emission in the form of a broad double-hump extending 

from 625 to 800 nm (Figure 2.11). The trap state emission is due to the presence of the 
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thiolate capping groups, which are known to act as hole acceptors, effectively reducing 

the band-edge luminescence. 
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Figure 2.11. PL spectrum of TOPO- and MUA-capped CdSe NPs; the broad, red-shifted 

peak at 725 nm is due to hole-trapping by thiolate molecules 

 

 2.2.7 Surface Area and Porosimetry Analysis 

 Due to their small particle size, nanomaterials have a surface-to-volume ratio that 

is much larger when compared to bulk materials. The surfaces of any material have 

physical and chemical properties that differ from those on the interior, due to the fact that 

they are bound only on one side to inner atoms, leaving uncompensated atomic forces at 

the surface. Surface atoms usually show enhanced reactivity and thus have become the 

focus of numerous studies and applications such as in catalytic or sensing materials. 

When high surface area particles are assembled in highly porous structures, as is the case 



www.manaraa.com

 

 

48

 

of aerogel materials, an enhancement of the aforementioned properties is expected. To 

better understand the influence of such properties upon the activity of the studied 

materials, the surface area and porosity have to be quantified. 

 One of the most popular methods used for the determination of surface area and 

pore volume, size and structure uses the adsorption/desorption of gases on the surface and 

in the pores of a dry solid.101 The “dangling bonds” intrinsic to surface atoms interact 

with gas molecules (adsorbates), attracting them to the surface (adsorbent). This 

interaction can occur via weak van der Waals forces, in which case the process is called 

physisorption. If the adsorbent and adsorbate participate in electron sharing, chemical 

bonds are formed and the process is called chemisorption. Different materials interact 

differently with the same gas and different gases may interact differently with the same 

material. By studying the behavior of the material upon adsorption/desorption of a gas 

under controlled conditions, information about the surface area and the porosity of the 

material can be extracted.102 

 In a typical gas sorption experiment, the sample surface is first cleaned of 

adsorbed gases, water or oil molecules, by heating it under vacuum or under the flow of 

an inert gas. Once the sample is dry, it is weighed and loaded into a closed glass tube, 

held at liquid nitrogen (77K) temperature. An inert gas, such as N2 or He, is then 

introduced in small increments into the sample tube. As the gas is adsorbed on the surface 

of the sample, the sample mass increases and the gas pressure decreases. Once the sample 

is saturated, the gas pressure in the sample tube reaches equilibrium. The quantity of gas 

adsorbed can be calculated using the gas laws, since the temperature is constant and the 
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sample tube volume is known. The data are then fitted using gas adsorbtion models and 

the surface area for the sample can be extracted in units of square meters per gram.101 

 At constant temperature, the quantity of gas adsorbed by a sample is proportional 

to the mass of the sample, the pressure of the gas, the temperature, and the nature of the 

gas and solid. For a given gas adsorbed on a particular solid, the dependence of the 

quantity of gas adsorbed on these parameters can be expressed as 

n = f (p/p0) T, gas, solid 

where n is the quantity of gas adsorbed, and p/p0 is the relative pressure, with p being the 

equilibrium and p0 the saturation pressure of the gas. Adsorption isotherms are 

constructed by graphing the quantity of gas adsorbed as a function of the gas pressure.102 

Typically, both adsorption and desorption isotherms are measured. The shape of an 

adsorption/desorption isotherm depends on the type of material and the nature of the 

adsorption process that occurs in the sample. According to classical adsorption theory,101 

as gas molecules are introduced under incremental pressure to the surface of a clean, cold 

material, they would first form a monolayer on the surface before beginning a second 

layer. Multilayer formation occurs next, followed by capillary condensation. Depending 

on the porosity and pore structure of the material, a combination of these processes can 

occur. At low relative pressures, gas molecules form a monolayer on the sample surface 

and fill micropores (pores with diameters less than 2 nm). As the pressure is increased 

further, multilayers start to form, filling mesopores (2–50 nm) and macropores (> 50 nm). 

When the saturation pressure of the gas is neared, capillary condensation occurs, as the 

gas molecules condense into a liquid. 
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Figure 2.12. The basic types of adsorption/desorption isotherms (adapted from Gregg)102 

 

Figure 2.12 illustrates the six different types of adsorption isotherms that can be 

observed in a gas sorption experiment, as given by the Brunauer, Emmett and Teller 

(BET) classification.  The type of pore or interaction that would exhibit each isotherm 

shape is also indicated. The hysteresis loops observed in the Type IV and V isotherms are 

characteristic of mesoporous materials, and occur due to the different behavior of the 

sample as it is being filled or emptied. The lower branch represents the adsorption 

process and the upper branch, the desorption. The hystereses may have different shapes, 

depending on the pore structure and pore shape (cylinder, slit-shape or ink bottle).  

Since materials may have pores in a range of sizes, isotherm shapes can vary 

greatly and they need to be examined in detail to extract information about the surface 

area and the pore structure. Accordingly, thermodynamic and other principles have been 

used to construct different theoretical models for the interpretation of the 

adsorption/desorption data. For the measurement of surface area, two of the most used 
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models are the Langmuir model (which describes chemisorption), and the BET model 

(used for physisorption processes). The Langmuir model assumes that adsorption only 

occurs through monolayer formation. The BET model generalizes the Langmuir theory 

by considering the formation of multiple layers as a result of the same attractive forces 

that are responsible for the condensation of gases.101 The BET model is thus more 

suitable for analyzing surface area in mesoporous materials. The BET model is applied to 

the low relative pressure region of the adsorption isotherm (monolayer coverage). By 

equating the rate of condensation of gas molecules onto an already adsorbed layer to the 

rate of the evaporation from that layer, the BET equation can be generated (Equation 2.6) 

            P                1             C – 1     P 
—————  =  ———  + ——— ——                    (Equation 2.6) 

      Va(P0–P)          VmC          VmC      P0 

 

In this equation, P and P0 are the equilibrium and saturation pressure of the adsorbtive 

gas; Va is the quantity of gas adsorbed at pressure P; Vm is the quantity of gas adsorbed 

when one monolayer is formed; and C is a constant. If the adsorption process can be 

described using the BET model, a plot of P/[Va(P0–P)] vs. P/P0 should yield a straight 

line, with intercept 1/VmC and slope (C–1)/VmC. From the straight line regression, the 

values of Vm and C can then be extracted. From the volume of the monolayer Vm, the 

surface area of the sample can be determined using an approximate surface area for one 

gas molecule (i.e. 16.2 Å2 for a N2 molecule).101 

 For the determination of information related to the porosity of the sample (i.e. 

pore size, pore size distribution, cumulative pore volume), the adsorbtion/desorption 

isotherms can be modeled using a variety of theories, including that of Barrett, Joyner, 

and Halenda (BJH) which is directly relevant to the dissertation research.101 The BJH 
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model usually assumes pores with a cylindrical shape. The BJH model uses the Kelvin 

equation to correlate the pore size with the critical condensation pressure of the adsorbed 

gas, therefore allowing the characterization of the mesopore size distribution of the 

adsorbent. The Kelvin equation is usually written as Equation 2.7 

ln(P*/P0) = – ( 2 γυ cosθ/ RTrm )                           (Equation 2.7) 

where P* and P0 are the critical condensation and the saturation pressure; γ is the liquid 

surface tension; υ is the molar volume of the condensed gas; θ is the contact angle 

between the solid and the condensed phase (assumed to be zero when nitrogen is used, so 

cosθ = 1); rm is the mean radius of curvature of the liquid meniscus; R is the ideal gas 

constant; and T is the absolute temperature.101 Considering the fact that pore filling or 

emptying occurs in a stepwise manner, the BJH model uses the Kelvin equation to 

compute the pore radius distribution. Once the radii of the pores are known, the 

assumption of cylindrical geometry is used to calculate the total length of the cylinder. 

This allows for the calculation of the cumulative pore volume of the sample.101  

In this dissertation research, a Micromeritics Tristar II surface area and 

porosimetry analyzer was used to obtain nitrogen adsorption/desorption isotherms at 77K 

for aerogel samples. The surface area was calculated using the BET model. The pore-size 

distribution plot, the average pore diameter and cumulative pore volume were determined 

using the BJH model. Aerogel samples were degassed at 110˚C under flowing Ar for 24 

hours before analysis. 
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 2.2.8 Inductively-Coupled Plasma Mass Spectrometry (ICPMS) 

 ICPMS is a popular technique for elemental analysis, due to its low detection 

limits (parts per billion for most elements), high selectivity, and good precision and 

accuracy.99  The technique involves the use of an ICP torch as an atomizer and ionizer, 

coupled to a quadrupole mass spectrometer, which separates the generated ions based on 

isotopic mass to charge ratios. The number of ions of each type is then measured by an 

appropriate transducer, and a spectra consisting of a simple series of isotope peaks for 

each element present is generated. For quantitative measurements, calibration curves 

need to be constructed by using standard solutions of known concentrations of the 

element of interest. ICPMS is used for the identification and quantification of positive 

metal ions; one of the advantages of the technique includes the fact that multiple analytes 

can be measured simultaneously.  

 In this dissertation research, a Perkin-Elmer Life Sciences Elan 9000 instrument 

equipped with an automatic sampler was used for the determination of heavy metal 

concentrations. The data were collected as counts per second. A standard external 

calibration curve was constructed by diluting stock solutions of 1000 ppm standards 

(High-Purity Standards) with 2% HNO3 in HPLC grade water. Samples were prepared by 

similarly diluting the collected solutions to parts per billion levels. 
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CHAPTER 3 

UNCOVERING THE MECHANISM OF METAL CHALCOGENIDE GEL 

FORMATION 

 

3.1 Introduction 

For biological applications, CdSe and other NPs must be soluble in polar media. 

This property is usually attained by attaching a monolayer of polar, usually carboxylate-

terminated, thiolates on the surface of the NPs.103 The stability of such thiolate-capped 

CdSe NPs is usually poor, due to photo-oxidation of the thiolate ligands to form 

disulfides, a process that is mediated by the semiconducting NPs. In 2001, Peng et al.104 

reported on the oxidation of thiolate capped CdSe NPs in the presence of atmospheric 

oxygen, resulting in aggregation and precipitation. At the same time, they observed that 

when excess thiols/thiolates are present in solution, the aggregates could be dispersed, 

therefore extending the stability of the sol. They hypothesized that the presence of ligands 

was key to ensuring a stable sol. 

Our group has used this oxidative removal of surface thiolates as a way to link 

particles together into 3D architectures, in which metal chalcogenide NPs are assembled 

into porous network structures. Gacoin et al.24, 26, 63, 105 have reported on the formation of 

similar structures between CdS NPs and on the fact that the interparticle bonding is not 

mediated by any organic linker. In order to probe the nature of the interparticle bonding 

in metal chalcogenide gels, metal chalcogenide NPs and gels were synthesized and 

dispersion studies using various reagents were conducted.  
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Regarding the nature of the interparticle bonding in forming the gel network, 

previous work done in our group94 shows the following: 

 CdSe wet gels, aerogels and xerogels can be dispersed upon treatment with a basic 

solution of mercaptoundecanoic acid (MUA) in methanol (pH=12, adjusted using 

solid tetramethylammonium hydroxide – TMAH); 

 Treatment of the dispersed sols with an oxidant (hydrogen peroxide–H2O2 or 

tetranitromethane–TNM) leads to the re-formation of the gel ; 

 Treatment with bases such as pyridine does not lead to gel dissolution, suggesting that 

a ligating agent is insufficient to promote dispersion; 

 Raman analysis of the room temperature-synthesized NPs shows the appearance of a 

peak at 258 cm–1 in the aerogel and xerogel, which is not present in the pre-gelled 

NPs; this has been attributed to the presence of Se–Se bonds in the 3D structures. 

Based on the prior study, it was hypothesized that surface Se2– was being oxidized to 

form amorphous Sen
2– species acting to link the particles together. To test this hypothesis, 

I investigated the surface speciation of the aerogel networks using XPS and conducted a 

more detailed investigation of the gel dispersion process, to be able to distinguish 

between ligation and reduction. 

 

3.2 Experimental 

 All the chemicals used in this chapter are listed in Chapter 2, Section 2.1. 
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3.2.1 Synthesis of CdSe NPs and gels 

Colloidal CdSe NPs were prepared by both an inverse micellar 24, 26, 63 and a high 

temperature synthetic route33 using highly coordinating surfactant ligands (Chapter 2, 

Section 2.1.2). Surfactant ligands were exchanged with FPhSH (inverse micellar route) or 

MUA (high temperature route) as reported in the literature.66, 104 Colloidal CdSe wet gels 

were prepared by oxidative aggregation of the thiolate capped CdSe NPs using a 

methanolic TNM solution as the oxidizing agent.66 The resulting CdSe wet gels were 

transformed into monolithic aerogels and xerogels by CO2 supercritical drying and bench 

top drying, respectively. 

 

3.2.2 Synthesis of CdS NPs and gels 

 CdS NPs were synthesized using a slightly modified procedure, adapted from 

Bawendi et al.106 In a typical synthesis, CdO (0.2 mmol), TOPO (4g, distilled and 

recrystallized from acetonitrile) and TDPA (0.05 g, ~0.2 mmol) were heated at 320°C 

under Ar for 16 hours (until a clear, colorless solution forms). In the meantime, the S 

precursor is prepared by stirring 0.026 g (0.8 mmol) of S into 8 mL oleylamine at room 

temperature, under Ar, for 2 hours. Upon the S solvation into the oleylamine, the color 

changes to orange. The reaction mixture temperature is then decreased to 250°C, and 2 

mL of the S precursor solution is injected. The color changes to yellow immediately; the 

particles are grown at 250°C for 30 min. The NPs are then dispersed in a minimum 

amount of hexane, and precipitated using a butanol/methanol mixture. After isolation, a 

ligand exchange is performed by stirring the NPs for 5 hours in a MUA-methanol 

solution (0.3 g MUA in 15 mL methanol), adjusted to pH ~10.5 using TMAH. The 



www.manaraa.com

 

 

57

 

MUA-capped NPs are precipitated using an ethyl acetate/toluene mixture, centrifuged, 

washed with ethyl acetate and finally dispersed with 4 mL methanol. Gelation is achieved 

by adding 0.05 mL 3% TNM to each vial containing 4 mL CdS sol. 

 

3.2.3 Synthesis of ZnS NPs and gels 

 ZnS NPs were prepared by the inverse micellar synthetic route, as described in 

Chapter 2, Section 2.2.4.24, 26, 63 AOT surfactant ligands were exchanged with FPhSH.66 

Colloidal ZnS wet gels were prepared by oxidative aggregation of the thiolate-capped 

ZnS NPs using a methanolic TNM solution as the oxidizing agent.66 

 

3.2.4 Oxidation of Na2Se by TNM  

In a typical reaction,  10 mL of anhydrous methanol, previously degassed and 

purged with Ar, was added to Na2Se (0.13g, ~1 mmol). The mixture was stirred under Ar 

until the dissolution of the salt was complete. To this mixture, 2mL (~0.1 mmol) of 1% 

methanolic TNM solution (degassed and purged with Ar) was added. After several hours, 

a black precipitate was observed at the bottom of the flask and was isolated by 

decantation and washed with methanol. 

 

3.2.5 Dispersion studies  

CdSe dispersion studies. Thiolate solutions containing MUA were prepared for 

the dispersion studies by dissolving 0.1092 g of MUA (0.5 mmol) in methanol (5 mL) 

and titrating to pH = 12 with TMAH. CdSe or CdS wet gels (corresponding xerogel 

weight is ~ 0.002 g) prepared from a 4 mL sol of high temperature synthesized NPs were 
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dispersed in the above solution. Ethyl acetate was added to precipitate the dispersed 

particles, which were isolated using centrifugation. The resulting NPs were washed two 

times with ethyl acetate to remove the residual MUA and dispersed in 12 mL of methanol 

to form a sol. Re-gelation was achieved by adding 0.05 mL of 3 % TNM to 4 mL aliquots 

of the resultant CdSe or CdS sol. For dispersion studies on aerogels and xerogels, 0.002 g 

of the CdSe aerogel/xerogel prepared from high temperature synthesized NPs was added 

to the freshly prepared thiolate solution described above. The resulting dispersed NPs 

were precipitated and isolated using ethyl acetate as described previously.  

ZnS dispersion studies. Dispersion studies of ZnS gels were carried out by 

adding either 2 mL pyridine, 2 mL ethylenediamine or 0.25 mL of 4-fluorobenzenethiol 

to wet gels. 

NaBH4 dispersion study. 0.04 g (~ 1 mmol) NaBH4 was added to 0.003g (0.02 

mmol) CdSe aerogel, in a Schlenk flask. The reaction mixture was evacuated and purged 

with Ar a few times. 6 mL of absolute ethanol, previously purged with Ar and cooled in 

an ice bath (~ 4°C) was syringed into the mixture. The flask was then placed in an ice 

bath and stirred for 8 hours. For the control reaction, the same amounts of CdSe aerogel 

and ethanol were stirred under the same conditions. 

 

3.2.6 Characterization  

UV-Visible Spectroscopy. High temperature synthesized NPs were diluted 

twenty-fold with methanol and analyzed against a methanol blank in the region from 200 

nm to 800 nm. NPs isolated from dispersed gels, aerogels, and xerogels were dissolved in 

15 mL of methanol and analyzed against a methanol blank in the same region. The 
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chromophore size was calculated using the absorption onset value and the effective mass 

approximation model, as explained in Chapter 2, Section 2.3.6.  

Powder X-Ray Diffraction (PXRD). Powdered aerogel/xerogel samples, or NPs 

isolated from dispersed solutions, were deposited on a low background quartz (0001) 

holder coated with a thin layer of grease. X-ray diffraction patterns were identified by 

comparison to phases in the International Centre for Diffraction Data (ICDD) powder 

diffraction file (PDF) database (release 2000). Crystallite sizes were calculated by 

employing the modified Scherrer formula (Chapter 2, Section 2.3.1) to the (110) peak of 

the high-temperature-prepared CdSe NPs (hexagonal) and to the (111), (220) and (311) 

peaks of the CdS NPs (cubic).  

Transmission Electron Microscopy (TEM). NP samples were prepared by 

depositing a drop of sol onto the grid followed by air evaporation, whereas aerogel 

samples were prepared on carbon-coated copper grids by dispersing fine powders in 

acetone using sonication, followed by depositing a drop of solution onto the grid and 

evaporating the acetone. For precursor NPs and dispersed NP solutions, average particle 

sizes were manually estimated by measuring the size of ~ 200 individual NPs in several 

TEM images.  

X-ray Photoelectron Spectroscopy (XPS). The samples were prepared by 

pressing the powder samples on a piece of indium foil prior to measurement. Survey 

scans were collected over the range from 1200 to 0 eV, with a 117.4 eV pass energy 

detection and a 1eV/step resolution. Close-up scans were collected over a range of 20-24 

eV around the peak of interest with 23.5 eV pass energy detection and a 0.05 eV/step 
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resolution. Measurements were performed at pressures lower than 2x10-9 Torr. The 

binding energy scales were adjusted using the C (1s) peak of graphite at 284.6 eV.  

 

3.3 Results and discussion 

If nanomaterial science is to respond to the challenges brought forth by actually 

integrating the discovery and innovation made in laboratory settings into the real-life 

device-driven industrial world, it must optimize the way in which NPs are connected into 

3D, macroscopic bodies that maintain the characteristic quantum confined properties of 

the NP building blocks. The sol-gel process used in our lab is a bottom-up approach of 

accomplishing this goal. At the same time, understanding the chemical nature of the 

assembly process is paramount to controlling and designing the electrical, optical, 

magnetic properties of the material. That is the motivation behind the investigation into 

the nature of the bonds holding together our metal chalcogenide gel networks. 

As a result of the previously made observations,94
 a mechanism for the gelation 

and dispersion of CdSe NPs based on the formation of diselenide was proposed (Scheme 

1). During the gelation, oxidation of thiolate leads to the formation of disulfides or 

sulfonates, producing decomplexed Cd2+ ions on the particle surface. The Cd2+ ions can 

be easily solvated by the carboxylate species and/or solvent (methanol is known to bind 

strongly to binary metal cations95), leaving a selenide-rich NP surface. In the presence of 

excess oxidizing agent, surface selenide groups can oxidize and form diselenide (or 

polyselenide) species, linking the particles together. Finally, the addition of a reducing 

agent, such as a thiol, will result in the cleavage of the Se–Se bonds and the liberation of 
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HSe– (or a more reduced Se species), forming individual NPs that are again surface-

complexed with thiolate ligands.  

 

 

Scheme 3.1. Proposed mechanism of CdSe NP gelation/dispersion 

 

To confirm the formation of Sen
2- in the gelation process, I evaluated the surface 

speciation of CdSe NPs and aerogels, prepared using the standard high-temperature 

synthesis route, using X-ray photoelectron spectroscopy (XPS). Typical survey spectra 

(Figure 2.8) show the presence of Cd, Se, S and P from the NP and C and O from the NP 

surface and from adsorbed gaseous molecules.     

Higher-resolution spectra were taken of the Cd and Se regions of the samples. The 

Cd 3d5/2 peak shifted from 404.5 to 405 eV and Se 3d peak shifted from 53.7 to 54.4 eV 

in the NP and aerogel samples, respectively. It is known107 that the comparison of the 

absolute peak position is not relevant for NP systems, since it is referenced to the valence 

band edge of bulk CdSe, which can shift108 due to quantum confinement effects.  
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To limit the effect of the band-edge shift as a function of NP size, we tested MUA 

capped NPs precursors and aerogel systems derived from the same NP building blocks. 

For the comparison between the NPs and the gel systems, the Cd 3d5/2 peak was fixed at 

405.5 eV (the reference value for Cd2+ in CdSe NPs107) and the difference between it and 

the Se 3d peak, analyzed. This difference decreased from 351.8 eV for the MUA capped 

CdSe NC precursors to 350.6 eV for the CdSe aerogel samples. The data is shown in 

Figure 3.1. 
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Figure 3.1. XPS spectra of the: top - Cd 3d region of MUA capped CdSe NC precursors 

(black) and corresponding aerogel (green); bottom – Se 3d area of the MUA-capped 

CdSe NPs (black, peak at 53.7 eV) and aerogels (green, peak at 54.9 eV). The escape 

depth of the photoelectrons in this energy range is 5-10 Å109 
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The Se 3d peak shifts by 1.2 eV from 53.7 eV in the NPs to 54.9 eV in the 

aerogel. This shift is intermediate between the maximum shift expected for Se2– to Se2
2– 

(0.9 eV)110 and Se2– to Se0 (1.9 eV),110 consistent with formation of Sen
2– species (a 

combination of Se0 and Se–). Importantly, CdSe aerogel samples that were kept in air for 

long periods of time (a few months, Figure 3.2) show the formation of an SeO2 peak at 

59.4 eV110, but there is no evidence of oxygen incorporation in freshly prepared CdSe 

gels. This confirms that surface oxygen-containing species are not formed during gelation 

and therefore do not participate in the interparticle bonding.   
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Figure 3.2. Se 3d area XPS spectra of a CdSe aerogel kept in air for one year. The peak 

at 59.4 eV can be indexed to SeO2.
110 This peak is absent in the as-prepared aerogel 

samples (inset: black trace,CdSe NPs; green trace, CdSe aerogel) 
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These data strengthen the previous observation that Se-Se bond formation, arising 

from the oxidation of the exposed CdSe NPs, is responsible for the linkage between 

particles in the gel networks. To confirm that oxidation of Se2- leads to Se-Se bond 

formation I treated Na2Se with a methanolic solution of TNM. Even with Na2Se: TNM 

mole ratios as high as 10:1, crystalline Se is formed, as evidenced by the powder X-ray 

diffraction (PXRD) pattern (Figure 3.3).     
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Figure 3.3. PXRD pattern of the black precipitate formed by the reaction of Na2Se with 

TNM. The expected peaks for Se (PDF # 73-0465) are shown as vertical lines 

 

Because CdSe NPs have unpassivated Se2- species on their surface,111, 112 

formation of polyselenide species can be expected in the presence of an oxidizing agent, 

analogous to the Na2Se to Se transformation. This, then, would explain the observation of 
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reversible gelation in the present case: thiols and thiolates can act as reducing agents to 

cleave the Se–Se bonds in these nanostructures. However, other common Lewis bases, 

such as pyridine, are not reducing; hence, they do not disperse the CdSe gels.  

      Based on the proposed mechanism (Scheme 1), the following can be predicted: 1) 

Cd2+ and oxidized thiolates will be liberated during the oxidative gelation, 2) gel 

dispersion can be effected with any reducing agent of suitable potential to cleave Se–Se 

bonds, and 3) particle etching will occur upon cycling of gelation and dispersion. The 

loss of Cd2+ and sulphur during the oxidative removal of thiolates (point 1) has been 

previously94 confirmed by energy dispersive X-ray analyses. Spectra of the residue from 

evaporating the supernatant of a CdSe wet gel show the presence of Cd and S, and the 

absence of selenium. The atomic ratio of Cd: S is found to be 1:2.1, consistent with an 

average of two thiolates binding to one surface Cd2+ ion.  

The previous studies94 investigated other common reducing agents such as tris(2-

carboxyethyl)phosphine hydrochloride (TCEP), (D,L)-1,4-dithiothreitol (DTT) and 2-

mercaptoethanol (ME) to further probe whether the dispersion process is driven by 

reduction (point 2). Consistent with the formulated hypothesis, addition of the above 

reducing agents to wet gel structures results in a disperse solution of CdSe NPs. 

However, each of these reducing agents is also a good ligating agent, making it 

impossible to state unequivocally that it is the reducing nature of the ligand that is 

responsible for breaking up the gel network. Accordingly, I tested whether a “pure” (non-

coordinating) reducing agent can break up the gel. To this effect, I stirred a CdSe aerogel 

with NaBH4 in ethanol, in an ice-bath. As a control, I simultaneously stirred the same 

amount of CdSe aerogel in ethanol only (no reducing agent). After stirring overnight, 
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both monoliths have been transformed to a powder. However, TEM images (Figure 3.4) 

show that the NaBH4 treated sample is broken into particles, while the control sample 

still maintains the gel structure, consistent with the proposed mechanism.  The absence of 

a dispersed sol in the NaBH4 case is attributed to the lack of suitable solubilizing 

functionalities.  

 

Figure 3.4. TEM images of the NaBH4 (left) and ethanol (right) treated CdSe aerogel. 

The NaBH4 treated sample has been dispersed into NPs, whereas the control sample still 

displays the gel network 

 

To further differentiate the roles of reducing or ligating character on gel 

dispersion, I attempted to disperse ZnS wet gels using N-containing ligands (pyridine and 

ethylenediamine), both of which are known to have a stronger Lewis basic affinity for the 

harder Zn2+ ion than the softer Cd2+ ion.  However, even after 1 year, the ethylenediamine 

and pyridine treated samples have not dispersed. On the other hand, the gels disperse 
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within a minute when thiols are introduced (Figure 3.5). This also supports the hypothesis 

that chemical reduction is a crucial step in gel dispersion. 

 

Figure 3.5. TEM images of a 4-fluorobenzenethiol-dispersed ZnS wet gel 

 

Previous studies94 have used powder X-ray diffraction (PXRD), transmission 

electron microscopy (TEM) and UV-visible spectroscopic studies (UV-vis) to probe the 

effect of the oxidation on the particle size (Point 3). All three techniques showed a 

systematic decrease in size upon successive gelation-dispersion cycles, consistent with 

the proposed mechanism in Scheme 3.1. A typical set of absorption data that I obtained 

upon repeated oxidation of CdSe NPs, followed by the reduction of the gel networks 

using thiolate solutions is exemplified in Figure 3.6.  
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 Figure 3.6. UV-vis absorbance measurements of (a) the CdSe precursor NPs, (b) NPs 

isolated from the dispersed wet gels, and (c) NPs isolated after a second cycle of re-

gelation and re-dispersion 

 

 Absorption spectra of thiolate-capped CdSe NPs show an onset at 547 nm with a 

maximum at 514 nm (Figure 3.6a). After the wet gel has been dispersed by the addition 

of MUA, the NPs thus isolated showed a blue shift in the absorption onset position, 

which now occurs at 534 nm (maximum at 502 nm, Figure 3.6b). After a second gelation-

dispersion cycle (i.e. treating the recovered NPs with TNM for gelation and then the 

monolithic wet gel thus obtained with MUA/MeOH/TMAH for dispersion), the 
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recovered NPs showed a further blue shift in the absorption onset to 526 nm (maximum 

at 495 nm, Figure 3.6c), which is consistent with the continuous decrease in particle size 

observed previously.94  

It is known, though, that CdSe is susceptible to oxidation and so the observed 

reduction in size could also be due to the formation of an amorphous oxide layer on the 

NP surface. If this layer were thin enough, it would be hard to observe in TEM. Also, 

PXRD and UV-vis measurements would not be able to distinguish it, since they are 

sensitive to the crystallite and chromophore size, respectively, which would be reduced 

even in the event of an oxide layer formation, not only by actual particle etching. Based 

on the lack of Se–O species in the XPS, oxidation appears unlikely, however. To verify 

that the observed reduction in size is indeed due to particle etching, I tested another II-VI 

system, namely CdS. This system is less susceptible to oxidation than CdSe. The 

experiment resulted in a similar result: CdS wet gels can also be dispersed using 

MUA/MeOH/TMAH solutions under the same conditions as CdSe. Upon successive 

gelation-dispersion cycles, the UV-vis absorption maximum and onset position show a 

blue shift (Figure 3.7), just like CdSe, indicating that the same etching of the surface 

occurs.  
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Figure 3.7. UV-visible absorption spectra of the CdS precursor NPs (a), NPs isolated 

from the dispersed wet gels (b), and NPs isolated after a second (c) and third (d) cycle of 

re-gelation and re-dispersion. The blue shift is consistent with the etching of the surface 

during successive gelation-dispersion cycles 

 

Moreover, the size reduction can be monitored using transmission electron 

microscopy (TEM) analysis (Figure 3.8). The size of the CdS NPs decreases from 4.4 ± 

0.5 nm for the original sol to 3.8± 0.4 nm, 3.7 ± 0.5 nm and 3.1 ± 0.5 nm for NPs isolated 

after one, two and three dispersions, respectively. Thus, it appears that a similar 
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oxidation-reduction mechanism is responsible for the gelation-dispersion of the CdS NPs 

and gels. 

 

Figure 3.8. Left: TEM image of the CdS aerogel (top) and NPs after one dispersion 

(bottom). The inset shows the high resolution TEM image of one CdS particle (inset scale 

bar is 1 nm). Right: the size distribution analysis of the CdS precursor NPs (a), and NPs 

isolated after one (b), two (c) and three (d) dispersion-gelation cycles 

 

A summary of the particle size estimation from the three different techniques can 

be found in Tables 3.1 and 3.2. There could be multiple reasons for the smaller sizes 

obtained by using the Scherrer formula on the PXRD pattern. One possibility is the 
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presence of an amorphous layer on the particle surface. We have actually not observed 

such a layer in TEM, but for CdSe and CdS the contrast is quite low and the amorphous 

layer could be difficult to resolve. The low TEM contrast might also be the reason for the 

consistent smaller particle size obtained by TEM, in comparison to UV-vis. 

 

Table 3.1. Comparison of CdSe particle size calculated94 using PXRD, TEM and UV-vis  

CdSe sample XRD size (nm)* TEM size (nm) UV-onset size (nm) 

Initial NPs 3.0+ 0.2 3.8+ 0.5 4.4 

After 1 dispersion 2.8+ 0.2 3.5+ 0.5 4.3 

After 2 dispersions n/d n/d 4.2 

After 3 dispersions n/d n/d 4.1 

* instrument error provided by Jade software for fit of the (110) peak 

 

Table 3.2. Comparison of CdS particle size calculated using PXRD, TEM and UV-vis 

CdS sample XRD size (nm)* TEM size (nm) UV-onset size (nm) 

Initial NPs 3.8+ 1.0 4.4+ 0.5 5.1 

After 1 dispersion n/d 3.8+ 0.4 5.0 

After 2 dispersions n/d 3.7+ 0.5 4.9 

After 3 dispersions n/d 3.1+ 0.5 4.8 

*standard deviation computed from size estimates based on the (111), (220) and (311) 

peaks 
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Another reason for the discrepancy could be the accuracy of the calculation itself. 

When dealing with such small particles (especially in the CdSe case), the combination of 

size and defect broadening creates a convolution of peaks in the X-ray diffraction spectra. 

This makes it difficult to clearly extract the information needed (FWHM) for the use of 

the Scherrer formula.113 This is evident when trying to use different peaks from the same 

PXRD pattern to calculate the size; when calculating the size of CdS particles using 

different peaks the deviation can be as large as 1 nm (Table 3.2). 

By analyzing the TEM images in more detail we noticed that a lot of particles 

seem to have several crystalline domains oriented in different directions inside a single 

crystallite (Figure 3.9). Since the X-ray technique is sensitive to the dimensions of such 

individual domains, this could explain the smaller values obtained. These domains have 

been observed by other groups also, and are probably due to the colloidal growth 

methods of the NPs. Again, these occur more in CdSe than in CdS and can be due to the 

overall smaller size of the CdSe, generating more stress.  

 

Figure 3.9. High resolution TEM image of CdSe NPs showing multiple domains 
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 The observation of the similar behaviour of CdS gels upon treatment with a 

reducing agent prompts the conclusion that a similar oxidation reaction is responsible, 

and thus formation of S–S bonds that hold together CdS gel networks. The addition of a 

reducing agent cleaves the bond and disperses the gel network (Scheme 3.2). 

 

Scheme 3.2. Proposed mechanism of CdS NP gelation/dispersion 

 

3.4 Conclusions 

XPS studies strengthen the previous conclusion that the bonding between particles 

in as-prepared CdSe NP gels is largely due to covalent Se–Se bonds. This is why the gel 

networks can only be dispersed upon the addition of a suitable reducing agent (i.e. a thiol 

or thiolate) and not with a non-reducing Lewis base (i.e. pyridine). The fact that a “pure” 

reducing agent, NaBH4, can break the gel network unequivocally distinguished between 

the role of thiol species as reductants or ligands. Cycling between oxidation and reduction 

causes successive surface layers to etch, effectively reducing the particle size, as was 

observed for both CdSe and CdS through UV-visible spectroscopy and TEM analysis. 
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The mechanism has been verified for CdSe and CdS and it can be surmised to extend to 

other metal chalcogenide NPs (i.e. ZnS, PbS) that undergo sol-gel assembly into 

networks. Overall, these data suggest that the well-known photochemical instability of 

chalcogenide semiconductor NPs can be attributed to photo-oxidation and subsequent 

interparticle linkage of surface chalcogenide species, not simply to aggregation of 

decomplexed particles, as originally proposed.104 
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CHAPTER 4 

NEW AEROGEL MATERIAL GENERATION USING CATION EXCHANGE 

REACTIONS 

 

4.1 Introduction 

Sol-gel chemistry enables the creation of solid networks in which semiconducting 

metal chalcogenide NPs (i.e. CdS, CdSe, PbS, and ZnS) are linked together into a highly 

porous 3D network (aerogel), without organic ligands at the interfaces between 

particles.93 The high porosity and dual particle/void interconnected networks enable the 

fast and efficient movement of matter through the structure and to the NP surfaces.72 

 I have recently demonstrated114 that the chalcogenide gel network is held together 

by covalent di- or poly-selenide bonds (Chapter 3), enabling cation exchange to occur 

without destroying the 3D gel network. The validity of this hypothesis has been tested78 

through the conversion of CdSe gels into Ag2Se, PbSe and CuSe simply by immersing an 

already gelled CdSe wet gel monolith in the cation solution of choice. The exchange 

resulted in complete conversion, while the monoliths remained intact. 

 The dissertation research investigated the extension of the cation exchange 

chemistry to ZnS gel networks, in an attempt to access a variety of new aerogel materials 

and to use the cation exchange reaction for the removal of heavy metals from aqueous 

solutions (Chapter 5). In the dissertation research, I targeted binary phases of Ag-S, Pb-S, 

Cd-S and Cu-S in order to compare the facility of ion exchange of sulfides to the 

previously studied selenides, and then targeted more complex ternary and quaternary 

phases of interest for solar cell applications (CuInS2, CuZnInS2). 
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4.2 Experimetal section 

 All the chemicals used in this chapter are listed in Chapter 2, Section 2.1. 

 4.2.1 Synthesis of ZnS NPs, gels and aerogels 

Colloidal ZnS NPs were synthesized using the inverse micellar route.24, 26, 63 In a 

typical synthesis, 111.53g (0.25 moles) of sodium bis(ethylhexyl) sulfosuccinate (AOT) 

was dissolved in 477.5 mL n-heptane. This solution was divided into two round bottom 

flasks and 11.25 mL of 0.15 M aqueous solutions of Zn(NO3)2 and Na2S was added to 

each flask, creating the inverse micelle nanoreactors in which the reaction would occur. 

The solutions were then degassed under vacuum and purged with Ar gas. After 1 hour of 

stirring to achieve homogeneity, the sulfide solution was cannulated into the zinc solution 

and the resultant zinc sulfide was stirred for 12 hours. The capping groups were then 

exchanged by adding 1.8 mL 4-fluorothiophenol (FPhSH) and 2 mL triethylamine 

(TEA), causing the NPs to precipitate from solution. The NPs were isolated by 

centrifugation, washed with hexanes and dispersed in 20 mL acetone. The colloidal NPs 

were then assembled into 3D wet gel networks by adding 0.2 mL aliquots of 3% 

tetranitromethane (TNM) solution in acetone to each 4 mL ZnS NP sol. The wet gels 

were left to age for one week, and the solvent was then exchanged with fresh acetone 2-3 

times a day over a two day period. 

 The wet gels were transformed into aerogels using supercritical carbon dioxide 

drying (SCD). The wet gel monoliths were dried in glass vials, with a punctured 

polyethylene cap to allow for solvent exchange. The drying procedure is presented in 

detail in Chapter 2, Section 2. 

 



www.manaraa.com

 

 

79

 

 4.2.2 Cation exchange with Ag+, Pb2+, Hg2+, Cd2+ and Cu2+ 

 The initial cation exchange study was conducted by carefully adding 4 mL of 

0.15M AgNO3, Cd(NO3)2, Hg(NO3)2, Cu(NO3)2 in methanol or Pb(NO3)2 in 1:1 v/v 

methanol/water solutions (representing an approximate 3 fold heavy metal excess) to ZnS 

wet gel monoliths that were previously exchanged with fresh methanol. The cation 

exchange process was conducted for various time periods (from 3 hours to two weeks, 

see discussion below), followed by exchange with fresh solvent, supercritical drying, and 

analysis of the resultant gels. 

 

 4.2.3 Exchange with Cu+ and In3+ 

 The exchange was performed inside an inert atmosphere glove box, using dry 

solvents. Stock solutions for the exchange reaction were prepared by dissolving 0.670 g 

CuI in 15 mL methanol and 35 mL acetonitrile (0.07 M Cu+) or 0.830 g InCl3 in 25 mL 

methanol and 25 mL acetonitrile (0.07 M In3+). As a precursor, both ZnS aerogel 

monoliths and wet gels were used. The exchange was conducted by adding 2 mL of each 

Cu+ and In3+ solutions (1.5 fold metal excess) to the ZnS precursor. The vials were left 

undisturbed for 12 hours and were then exchanged with methanol and then acetone over a 

period of 3–5 hours. The solvent was then evaporated under vacuum, drying the sample 

into a xerogel, which was taken out of the inert atmosphere and analyzed using PXRD 

and TEM/EDS. For TEM/EDS, Ni grids were used so that an accurate atomic ratio could 

be obtained, without interference from the Cu in the grids usually used. 
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4.3 Results and discussion: Synthesis of binary phases via cation exchange 

 4.3.1 Characterization of precursor ZnS NPs and aerogels 

 PXRD spectra of the ZnS NPs indicate that they crystallize in the cubic structure 

(Figure 4.1). The broad peaks are a consequence of the small particle size. TEM images 

of the particles indicate that they are spherical, about 4 nm in size and well dispersed in 

solution. The optical properties of the NPs were investigated using PL spectroscopy. The 

NP sol is highly luminescent, exhibiting a broad emission peak at around 400 nm (Figure 

4.1). The excitation scan indicates that the main wavelength responsible for the emission 

is around 330 nm, corresponding to an approximate band gap value of 3.78 eV. This is 

slightly higher than the bulk band gap of ZnS (3.68 eV), consistent with the widening of 

the band gap due to quantum confinement. 



www.manaraa.com

 

 

81

 

 

Figure 4.1. (A) PXRD spectra of ZnS NPs and aerogel; (B) PL emission and excitation 

spectra of thiolate-capped ZnS sol; (C) TEM image of ZnS NPs 

 

 After gelation, the crystal phase is maintained, as indicated by PXRD (Figure 4.1, 

A). TEM images show the highly porous, interconnected morphology specific to aerogels 

(Figure 4.2). Lattice fringes are visible in HRTEM, indicating the fact that the NPs are 

crystalline; the orientation of the different domains in the gel network indicates that the 

NPs maintained their individuality in the 3D structure. 
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Figure 4.2. (A) TEM and (B) HRTEM image of a ZnS aerogel. The inset in (A) shows a 

picture of a ZnS wet gel monolith 

 

 If we consider the overall cation exchange reaction between ZnS and a heavy 

metal cation (Hm
n+) 

(1) ZnS(s) + Hmn+
(aq)

 ↔ Hm2Sn(s) + Zn2+
(aq),                  K 

it can be thought of thermodynamically as the combination of the solubilization processes 

       (2)                            ZnS(s) ↔ Zn2+
(aq) + S2–

(aq)                                      Ksp1 = 3 x 10–23  

and (3)                            Hm2Sn(s) ↔ Hmn+
(aq) + S2–

(aq)                                Ksp2 . 

 Thermodynamically, (1) = (2) – (3) and the equilibrium constant (K) for the 

cation exchange process can be derived from the solubility product constants for ZnS and 

HmS: K = Ksp1 / Ksp2. As long as Ksp1 is higher than Ksp2 (ZnS is more soluble than the 

incoming metal sulfide), there is a thermodynamic driving force for the reaction. 

Incoming cations were thus chosen whose sulfides have different Ksp values, all lower 

that that of ZnS, but that also differed in size, charge, mobility and reduction potential 

5 nm5 nm
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(Table 4.1), in order to gauge the influence of such factors upon the overall cation 

exchange reaction. 

 

Table 4.1. Solubility product constants, reduction potentials and size of the exchanging 

cations 

 

Material/ 

Exchanging cation 

Solubility 

product constant 

(Ksp) 

Reduction 

potential115 (E0) of 

the cation (Mn+/M) 

(V) 

 

Size115 to charge ratio 

of cation 

(pm) 

ZnS / Zn2+ 3 x 10 –23  - 0.763 37 

CdS / Cd2+ 1 x 10 –27  - 0.403 48 

PbS / Pb2+ 3 x 10 –28  - 0.125 60 

CuS / Cu2+ 8 x 10 –37 + 0.340 37 

Cu2S / Cu+ 2.7 x 10 –42 + 0.520 77 

Ag2S / Ag+ 8 x 10 –51 + 0.800 115 

In2S3 / In
3+ 1.94 x 10 –68 - 0.338 27 

HgS / Hg2+ 2.0 x 10 – 53 + 0.854 51 

 

 4.3.2 Exchange with Ag+ 

 The use of cation exchange for the generation of new materials stems from the 

desire to use the knowledge gained from the optimization of composition and 

morphology of certain phases and access new ones, while circumventing tedious new 

optimization processes. Ag+ is known to undergo facile cation exchange reactions in a 
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variety of precursor metal chalcogenide NP systems (CdSe75, CdS116). Its high mobility 

allows for a fast exchange reaction that conserves the shape of the precursor NPs. It also 

allows for the exchange to occur in thin film morphologies (i.e. ZnS117, CdS118, 119), 

where the exchange kinetics are usually prohibitive. The exchange has been extended to 

CdSe NP gel networks78 yielding monolithic Ag2Se gels in which the cation exchange 

occurred without destroying the anionic lattice and interparticle connecting bonds. In this 

dissertation research, the cation exchange behavior of ZnS NP gel networks with Ag+ was 

studied. The solubility of Ag2S is lower than that of ZnS and the reaction is thus 

thermodynamically favored (K = 3.8 x 10 27). 

 Upon treatment of a ZnS wet gel monolith with a 3 fold excess Ag+ methanolic 

solution, the color changes from white, characteristic of the wide band gap ZnS, to black, 

within seconds, indicating that the cation exchange occurred. The monolith stayed intact, 

but shrunk by about 10%. To ensure complete exchange, the vial was left undisturbed for 

3 hours, in the dark (covered with aluminum foil). After that, the gel was exchanged with 

fresh solvent (methanol, then acetone) over two days, supercritically dried and analyzed. 

 PXRD data (Figure 4.3) indicate that the exchange took place, and that Ag2S is 

the only crystalline phase formed. It is also obvious that the peak sharpness has increased 

substantially between the ZnS precursor (Figure 4.1) and the Ag+ exchanged material, 

indicating an increase in the crystallite size. Applying the Scherrer formula to the (111) 

peak at 2˚ reveals that the size has increased from 4.3 nm for the ZnS 

precursor gel, to 25.3 nm in the Ag+ exchanged gel. 



www.manaraa.com

 

 

85

 

 

Figure 4.3. PXRD pattern of a ZnS wet gel after 3 hours exchange with Ag+, in the dark 

 

 TEM images (Figure 4.4) indicate that the NP interconnectivity is maintained, and 

the porous structure characteristic to aerogels, conserved. The particle size in the network 

is between 10-20 nm, consistent with the increase observed in PXRD. EDS data show the 

presence of Ag and the absence of Zn, indicating that the exchange is complete, and the 

Ag:S atomic ratio is consistent with the Ag2S formulation. 
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Figure 4.4. (A) TEM image and (B) EDS spectrum of a Ag+ exchanged aerogel 

 

 When the exchange is conducted for 12 hours and the vial is left under ambient 

fluorescent lighting, PXRD data indicate the formation of crystalline Ag, together with 

the Ag2S phase (Figure 4.5). In TEM, spherical regions of higher contrast are observed 

(Figure 4.6), and the EDS analysis of those regions show a higher (~ 9:1) Ag:S atomic 

ratio. Based on this information, I surmise that Ag NP-decorated Ag2S aerogel can be 

synthesized by using a longer exchange time, in the presence of light. It is worth noting 

than even at short times, in the absence of light, some spherical dark features are 

observed in TEM, suggesting Ag NP formation (Figure 4.4). From this it can be 

concluded that reduction of Ag+ to Ag is facile and difficult to control. A small peak can 

also be detected in PXRD, consistent with Ag formation (Figure 4.5,C). 

5 nm5 nm

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

5000

10000

15000

Si

S

Ag
Ag

Ag

Ag

Ag

C
o

u
n

ts
 (

ar
b

it
ra

ry
 u

n
it

s)

Energy (keV)

 Ag+ exchanged aerogel
Ag:S atomic ratio = 1.9:1

 

(A) (B)

5 nm5 nm

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

5000

10000

15000

Si

S

Ag
Ag

Ag

Ag

Ag

C
o

u
n

ts
 (

ar
b

it
ra

ry
 u

n
it

s)

Energy (keV)

 Ag+ exchanged aerogel
Ag:S atomic ratio = 1.9:1

 

5 nm5 nm

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

5000

10000

15000

Si

S

Ag
Ag

Ag

Ag

Ag

C
o

u
n

ts
 (

ar
b

it
ra

ry
 u

n
it

s)

Energy (keV)

 Ag+ exchanged aerogel
Ag:S atomic ratio = 1.9:1

 

(A) (B)



www.manaraa.com

 

 

87

 

 

Figure 4.5. (A) PXRD spectrum of the aerogel obtained after 12 hours exchange with 

Ag+; (B) detail of spectrum in (A) showing the characteristic Ag peak; and (C) detail of 

the spectrum in Figure 4.3, emphasizing the minor Ag peak for those experimental 

conditions 
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Figure 4.6. (A) TEM image and (B) EDS spectrum of the aerogel obtained after 12 hours 

exchange with Ag+ 

 

 4.3.3 Exchange with Cd2+ and Pb2+ 

 I investigated whether the direct exchange between dications previously studied in 

CdSe aerogel materials78 can be extended to ZnS aerogels, as well as the speed of the 

exchange, since practical applications in water remediation would require reasonably fast 

kinetics. To interrogate whether thermodynamic or kinetic factors are the main reaction 

driving factor in our systems, we compared Pb2+ and Cd2+ as the incoming exchanging 

cations, since their sulfides have similar solubility constants (Ksp) : Ksp = 3 x 10–28 for 

PbS, and 1 x 10 –27 for CdS. These values are similar, and lower than that for ZnS (Ksp = 

3 x 10 –23), and thus the solubility-based reaction driving force is similar for the exchange 

of both cations. 

 Wet gels of ZnS were treated with solutions of Pb2+ and Cd2+ under forcing 

conditions (3 fold excess of exchanging ion) and the process monitored visually by the 

gel color change. Results indicate (Figure 4.7) that the Zn2+ cation can be exchanged with 
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Pb2+ and Cd2+ upon treatment of ZnS wet gels with solutions containing these ions in a 

one step cation exchange reaction, under very mild conditions (room temperature, 

methanol (Cd) or methanol/water (Pb) solvent). 

 

Figure 4.7. Pictures of a (left) ZnS wet gel; (middle) Cd2+ and (right) Pb2+ exchanged wet 

gel, showing the specific color change and the conservation of the 3D gel monolith 

integrity upon the cation exchange. (The size of the monoliths is not to scale, nor does it 

represent a series in which a particular ZnS monolith was exchanged) 

 

 A first observation was that the timescale of the exchange is very different for the 

two ions: the exchange between Pb2+ and Zn2+ (color change from white ZnS to black 

PbS) happened in less than one minute, while the characteristic yellow color of CdS did 

not appear until several days later. For both systems, the gel networks remained 

undisturbed (Figure 4.7), as previously observed in the selenide systems.78 PXRD data of 

the xerogels resulting from exchange with Pb2+ overnight and with Cd2+ for two weeks 

show that the incoming metal cation has been incorporated into the lattice, generating 

PbS and CdS (Figure 4.8) and that crystallinity is preserved as the structure changes. The 

peak sharpness increases for the faster Pb2+ exchange, indicating that the crystallite size 

has increased. Using the Scherrer equation, the crystallite size can be calculated to be 4.3 

nm for the ZnS precursor gel, 4.1 nm for the Cd2+ and 18.6 nm for the Pb2+ exchanged 
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gels. The small size difference observed between the ZnS and Cd2+ exchanged material is 

indicative of the fact that during the slow exchange process, the anionic network is not, or 

very little, disturbed. The fast Pb2+ exchange, though, proceeds with a greater lattice 

rearrangement and causes the particle building blocks to grow in size, similar to the Ag+ 

exchanged samples. Nevertheless, the NPs maintain their connectivity and the integrity of 

the gel network is conserved (Figure 4.7). 
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Figure 4.8. PXRD spectra of (A) Pb2+, (B) Cd2+ exchanged ZnS xerogel, and (C) ZnS 

precursor gel. The vertical lines represent the respective crystal patterns, according to the 

PDF patterns noted in the figure 
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TEM images (Figure 4.9) confirm the retention of the gel network connectivity 

during exchange. The minimal increase in NP size indicated by the PXRD data is 

consistent with crystallite sizes indicated by TEM for ZnS (~ 4 nm) and CdS (~ 5 nm) 

materials.  Likewise, TEM reveals PbS primary particle sizes on the order of 7–15 nm, 

confirming the increase in crystallite size noted by PXRD. EDS analyses show that not 

all ions exchange equally (e.g. removal of Zn2+ by displacement with Cd2+ proved 

difficult to drive to completion). The reason for the incomplete cation exchange between 

Cd2+ and Zn2+ might stem from the known capacity of II-VI compounds for forming 

pseudobinary alloy systems.73, 120 On the other hand, IV-VI compounds are sparsely 

soluble in II-VI crystals, and thus the ion exchange of ZnS with Pb2+ is expected to form 

heterostructures, not solid solutions, leading to complete conversion, which is what we 

observe.  
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Figure 4.9. TEM micrographs of (A) ZnS precursor aerogel and (B) Cd2+ and (C, D) Pb2+ 

exchanged ZnS aerogel networks. The inset in B shows a lower magnification of the Cd2+ 

exchanged gel, with the gel network intact (scale bar 100 nm). The NP size increases 

slightly during the cation exchange (B, C), but the gel network remains connected (B 

inset, D) 

 

Based on these data, it can be surmised that the ion-exchange reaction occurring 

in the ZnS gel materials is driven by factors other than solubility, since ions with similar 

solubility product constants exchange at very different rates (minutes for Pb2+, days for 

Cd2+). The speed of the exchange correlates with the difference in the reduction potential 

(A) (B)

(C) (D)
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between Zn2+ and the incoming metal cation: the bigger the difference, the faster the 

exchange (Table 4.2). A similar trend was previously reported76 for the cation exchange 

of ZnS thin films. This trend has been justified by the fact that the low solubility and 

highly covalent character of heavy metal sulfides causes the electrochemical electron 

transfer to have a higher importance over solubility-difference-driven conversion. The 

facile exchange observed in the case of Ag+ is also consistent with the large difference 

between the two metals’ reduction potentials (Table 4.2). 

 

Table 4.2. Solubility product constants, reduction potentials and observed cation 

exchange speed for ZnS and cation exchanged aerogels 

Material Solubility 

product 

constant 

(Ksp) 

Reduction 

potential (E0) of 

the cation 

(Mn+/M) 

(V) 

ΔE0 

(Mn+/M – 

Zn2+/Zn) 

(V) 

Qualitative 

speed of 

exchange 

ZnS 3 x 10 –23 - 0.763 - - 

CdS 1 x 10 –27 - 0.403 + 0.360 weeks 

PbS 3 x 10 –28 - 0.125 + 0.638 minutes 

CuS 8 x 10 –37 + 0.340 + 1.103 minutes 

Ag2S 6 x 10 –53 + 0.800 + 1.563 seconds 

HgS 2 x 10–53 + 0.854 + 1.617 seconds 
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This study allowed for a better understanding of one of the factors affecting the 

exchange mechanism, which will facilitate the optimization of the reaction conditions and 

the extension to other heavy metals for remediation studies. The process should be 

generic and should work for any metal with a more positive standard reduction potential 

than that of Zn(II)/ Zn. The trend was tested by using Hg2+ for the exchange (Ksp= 2 x 10 

–53, E0
 Hg

2+
/Hg = +0.854 V). When a ZnS wet gel is treated with a solution of Hg2+, the 

white gel turns black almost immediately, suggesting exchange for Hg2+ has occurred and 

happens more rapidly than for Pb2+, as expected based on the large, positive reduction 

potential. 

The observation of the direct exchange between divalent metal cations is different 

from previous work on cation exchange in NP systems,120-123 in which CdSe/CdS NPs 

were reported to be unable to directly convert to PbSe/PbS under mild reaction 

conditions, requiring an intermediate step of converting to Cu2Se/Cu2S. These previous 

reports justified their observations based on the assumption that the cation exchange 

reactions are driven mainly by the difference in solubility of the incoming and outgoing 

cation in various solvents, and thus a direct exchange between two similar dications 

would not be possible, requiring the intermediate singly charged ion exchange step.  

The observed ability of our material to undergo direct cation exchange between 

two cations with the same charge stems from the fact that, unlike the previously reported 

NP systems, the capping groups that are normally used to stabilize NPs are almost 

entirely removed in our systems during the gelation process, leaving behind a surface that 

is much more easily accessible to the incoming cation. Previous reports66 have shown that 

the S content — indicative of the coverage of thiol surfactants used to stabilize the NPs— 
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decreases from almost 20% for CdSe NPs to about 10% in the corresponding aerogels. 

Once the surface cations are exchanged, the concentration gradient created generates a 

reaction potential (Donnan potential124) that is propagated through the gel network, 

allowing for the complete exchange. Indeed, we find that treating a thiolate-capped ZnS 

NP sol with 0.15 M Pb(NO3)2 solution (the same conditions as the wet gel exchange) 

required nearly a month for conversion (Figure 4.10). Other studies have also shown that 

there is a kinetic effect that depends on the surfactant nature and concentration, where a 

decrease in the speed of reaction with increased surfactant concentration was 

observed.125, 126 
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Figure 4.10. (A) PXRD spectra of thiolate-capped ZnS NPs precursor (navy) and after 

four days of exchange with Pb2+ (red). The sharp peaks in the wine-colored trace are from 

unwashed bulk Pb(NO3). (B) PXRD spectrum of thiolate-capped ZnS NPs after one 

month of exchange with Pb2+. The vertical lines correspond to the cubic PbS crystal 

phase 
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The resulting aerogels surface area/porosity was characterized using N2 

adsorption/desorption isotherms (Table 4.3).  

 

Table 4.3. Measured surface areas and silica equivalents for ZnS and cation exchanged 

aerogels 

Sample Measured 

surface area 

(m2/g) 

Silica 

equivalentsa) 

(m2/g) 

Primary NP 

radius 

(nm) 

Total pore 

volume 

(cm3/g) 

Average pore 

diameter 

(nm) 

ZnS aerogel 368 596 2.2 1.42 13.1 

CdSb) aerogel 88 210 2.1 0.178 8.13 

PbS aerogel 49 195 9.3 0.178 12.8  

Cu7.2S4 aerogel 206 328 4.6 0.641 10.0 

Ag2S aerogel 37 154 10.0 0.140 12.1  

a) Silica equivalents were calculated by converting the grams of metal sulfide gel into 

moles and consequently into grams of silica. This is a standard way of comparing the 

surface area of different materials, and also referencing them to the more well-known 

porous silica materials.  

b) The cadmium exchange resulted in a solid CdS/ZnS solution; the silica equivalents for 

the samples were calculated assuming complete exchange. 

 

The decrease in surface area upon cation exchange is proportional to the NP building 

block increase (for an equal volume of material, increasing the NP diameter from 4.3 for 

ZnS to, i.e. 18.6 nm in the case of PbS, results in a theoretical decrease of surface area of 
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75%, when compared to the initial surface area: it scales as R1/R2, where R1 and R2 are 

the initial and final radii, respectively). This conclusion is substantiated by the almost 

constant average pore diameter and the corresponding decrease in the total pore volume. 

The Cd2+ exchanged gel is an exception, showing a decrease in the average pore 

diameter, as well. Probably, the slow exchange time resulted in more aging of the gel 

networks, since gelation is a dynamic, continuous process. 

 

4.4 Exchange with Cu2+, Cu+ and In3+ 

 The solubility product constants of CuS, Cu2S and In2S3 are lower than that of 

ZnS (Table 4.1), so the exchange reactions are thermodynamically favored. Considering 

the reduction potentials, though, and the trend observed (Table 4.2) for the cations tested 

above, Cu2+ and Cu+ are expected to exchange faster than In3+.  

 The exchange with Cu2+ was conducted in air, overnight. The color changed from 

white to black immediately after the addition of the Cu2+ solution, indicating that the ion 

exchange occurred. The PXRD of the Cu2+ exchanged aerogel has a raised baseline 

(Figure 4.11), which could be indicative of the presence of disorder in the structure, or 

the possibility of more than one stoichiometry of CuxSy. The main peaks can be indexed 

to Cu7.2S4, indicating that, similar to the Ag+ case, the Cu2+ underwent a reduction 

reaction, probably to Cu+. Unlike the case with Ag+, the complete reduction to Cu0 was 

not observed in the PXRD spectrum. TEM images (Figure 4.11) indicate that the particle 

interconnectivity and the gel network were retained, as well as the presence of lattice 

fringes characteristic of a crystalline sample. The sample contrast was uniform 

throughout, without the presence of higher-contrast regions observed for the Ag+ 
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exchange, which in that case indicated phase segregation. EDS data indicates a Cu:S 

atomic ratio of 2.3:1, which also corresponds to the reduction of Cu2+ to Cu+ and suggests 

an even more metal-rich phase is present in addition to the Cu7.2S4 indicated by PXRD. 

Alternatively, the higher copper ratio might be due to incomplete washing of the 

exchanging metal ion, or complexation by the thiolate capping groups still present on the 

wet gel surface. The fast kinetics of the exchange is in agreement with the observed trend 

based on reduction potentials (Table 4.2). Also, the positive reduction potential of Cu2+, 

just like that of Ag+, is conducive for the reduction of the metal, not only the cation 

exchange reaction. 

 

Figure 4.11. PXRD spectrum (left) and TEM image (right) of a Cu2+ exchanged aerogel 

 

 The fact that the Cu2+ exchanged with Zn2+ indicated that a synchronized 

exchange with Cu+ and In3+ might be possible. The goal of this reaction was to access 

CuInS2, which is highly desirable for photovoltaic applications. Upon the addition of the 

Cu+ and In3+ solutions to the aerogel, the color changed to black instantaneously. The 

sample in which a wet ZnS gel was used as a precursor changed color gradually from 
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white, to yellow, then red, brown and finally black within a couple of hours. As a note, 

the exchange with In3+ by itself was attempted by treating a ZnS wet gel with 2 mL of the 

same 0.07 M InCl3 solution used in the simultaneous Cu+ and In3+ exchange. No initial 

color change was observed, and the gel monolith seemed to have dispersed overnight. 

PXRD and EDS analysis of the dispersed sol show no indication of In being incorporated 

in the sample. This observation is consistent with the negative reduction potential of In3+ 

and it follows the reaction speed trend observed for Ag+, Cd2+ and Pb2+. 

PXRD patterns show broad peaks and a raised baseline, indicating slight disorder 

in the lattice (Figure 4.12) and also the possibility that more than one stoichiometry is 

present. TEM images show the presence of lattice fringes in the exchanged gel and EDS 

data indicates that both Cu and In have been incorporated (Figures 4.13, 4.14), but the 

sample in which the aerogel was used as precursor still exhibits a signal for Zn, indicating 

that the exchange was not complete. The fact that In3+ can be incorporated in the lattice 

when Cu+ is also present, as opposed to the instance of it being the only exchanging 

cation, suggests that the mobile Cu+ can act as a promoter for the cation exchange 

process, creating the potential needed for the less mobile In3+ to exchange. The reason for 

the incomplete exchange in the aerogel sample might reside in a “wettability” capacity of 

the dried sample, i.e. the reacting solution being unable to penetrate some of the smaller 

micropores present in the gel network. This, combined with the sluggish In3+ diffusion, 

resulted in incomplete exchange. This does not seem to be the case in the wet gel 

precursor, where there is no indication of Zn after the exchange, but the resultant material 

is also of low crystallinity, and with additional peaks that cannot be accounted for, but 
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which may suggest the presence of one or more impurity phases that form under the mild 

reaction conditions employed. 

Figure 4.12. PXRD spectra of Cu+ and In3+ exchanged aerogel and wet gel 
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Figure 4.13. (A) TEM image and (B) EDS data of the Cu+ and In3+ treated ZnS aerogel 

 

Figure 4.14. TEM image and EDS data of Cu+ and In3+ exchanged ZnS wet gel 

 

 Overall, under the mild conditions used for the exchange, and in agreement with 

the previous observed reaction kinetics trend, the complete exchange with Cu+ and In3+ 

and the achievement of a definite CuxInySz crystal phase was not achieved. The reason for 

the non-stoichiometric ratios observed in EDS might be the presence of excess metals, 
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due to incomplete washing of the samples. Washing with another solvent, such as 

acetonitrile, could allow for the achievement of less metal-rich ratios. Cu (I) acetate and 

In (III) acetate were used as the metal ion sources to analyze the effect of the counterion 

on the exchange. Indium acetate is very sparingly soluble in methanol or acetonitrile and 

copper acetate disproportionates readily even with degassed and dried solvents, under 

inert atmosphere. Also, in an attempt to increase the mobility of In3+ and perform the 

exchange, 0.1 M solutions of InCl3 in ethylene glycol were added to ZnS aerogel and wet 

gel samples, and the reaction mixture was heated at 175 ˚C for 12 hours. No color change 

was observed, and the gels densified upon heating. After washing with acetone and 

methanol, no In3+ incorporation could be observed in PXRD. 

 

4.5 Conclusions 

The current study has shown that ZnS aerogel materials are capable of undergoing 

cation exchange reactions with dications (i.e. Pb2+, Cd2+ and Hg2+), directly, under mild 

reaction conditions. The presence of an accessible pore structure is paramount for the 

promotion of the reaction. The ZnS gel materials studied possess a characteristic dual 

interconnected network of NPs and pores, which allows for the direct exchange between 

dications with similar solubility to occur, contrary to what we and others have observed 

in ligand-capped metal chalcogenide NPs or in xerogels, where the pore structure is 

partially collapsed. The speed of the reaction correlates with the difference in reduction 

potential of the incoming versus the outgoing cation (Ag+, Pb2+ and Hg2+ exchange very 

fast, while Cd2+ is slow and only partial exchange occurs under the same mild reaction 
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conditions). There was no correlation observed between the size or size to charge ratio of 

the exchanging cation and the speed of the reaction. 

The complete conversion of ZnS to CuInS2 was not achieved under reaction 

conditions identical with those used for the exchange with Pb2+, Ag+, and Cd2+, due to the 

slow kinetics of the In3+ cation —the reduction potential of In3+ ( – 0.338 V) is similar to 

that of Cd2+— whereas Cu+ exchanges much faster (E0 = +0.520 V). An investigation 

into modifying the reaction conditions (using a different Cu+  precursor, solution pH, 

different solvents) to achieve the complete conversion might provide better control into 

the completion of the reaction, as well as the control of the desired phase. Nevertheless, 

combining ZnS and CuInS2 NPs in various ratios has been reported to yield materials 

with bandgaps that span the entire visible spectrum, thus the incomplete exchange 

observed to date may prove beneficial for tuning the optical properties.127, 128 The 

absorbance characteristics observed in NP systems, combined with the 3D 

interconnectivity inherent to aerogels, could open the door for accessing a series of 

materials with enhanced efficiency towards PV devices (where electronic transport 

throughout the network— which is facilitated by the interparticle connectivity— is 

paramount). 
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CHAPTER 5 

HEAVY METAL WATER REMEDIATION USING ZnS GELS AS AN ION 

EXCHANGER 

 

5.1 Introduction 

The dissertation research analyzes the suitability of ZnS NP gel networks for use 

as heavy metal remediation materials via the easy cation-exchange chemistry previously 

demonstrated in our group for CdSe systems.78 The cation exchange process occurring in 

the soft metal sulfide aerogels, combined with the high porosity and high surface area 

inherent to aerogels, should allow for increased heavy metal removal capacities when 

compared to the reported oxidic and even layered sulfide materials, where most of the 

removal occurs through chemisorption to the accessible surface. Indeed, chalcogenide 

aerogels based on molecular frameworks have been proven suitable for remediation.62 

However, the efficacy of their NP aerogel cousins has yet to be tested. 

A schematic representation of the proposed heavy metal water remediation 

protocol is shown in Figure 1.3. Assuming that the cation exchange process will occur in 

a mole–to–mole ratio, a theoretical capacity of 2127 mg Pb/ g ZnS aerogel (10.3 mmol/ 

g) is predicted. This is almost an order of magnitude higher than the highest capacities 

reported to date, 331 mg/g (1.6 mmol/g) for a zinc sulfide chalcogel62 or 365 mg/g (1.8 

mmol/g) for thiol functionalized oxidic materials.85   
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5.2 Experimental 

 All the chemicals used in this chapter are listed in Chapter 2, Section 2.1. The 

synthesis of the ZnS NPs, gels and aerogels, and the cation exchange reaction with Pb2+, 

Cd2+ and Hg2+ were described in Chapter 4, Sections 4.2.1 and 4.2.2. 

 

5.2.1 Quantitative heavy metal uptake studies 

The heavy metal uptake from solutions of various concentrations was determined 

using the batch method at V/ m ~ 1,000 mL solution / 1 g solid exchanger, where V is the 

solution volume in mL and m is the mass of the ZnS solid exchanger used, in grams. In a 

typical experiment, 10 mL aqueous (HPLC grade water) solutions of the heavy metal of 

interest (i.e. Pb2+, Hg2+) of various initial concentrations was added to 10 mg of ZnS 

aerogel or xerogel. The mixture was kept undisturbed or stirred at room temperature for a 

specific time. The mixture was then centrifuged and an aliquot of solution taken out 

carefully, to avoid removing solid particles. The aliquots were then diluted with 2% nitric 

acid in HPLC grade water and the heavy metal content was analyzed using ICP-MS. 

Competitive ion exchange experiments were also performed using the batch method with 

a V/m ratio of 1000 mL/g, at room temperature and a contact time of 24 hours. 

Competing ions (i.e. Na+, Ca2+, and Mg2+) were added in a 1000 fold excess to the heavy 

metal tested (1 M competing ion vs. 1 mM heavy metal ion) and the experiments were 

carried out the same as described above. The material was also tested using tap water that 

was spiked with the heavy metal ion of interest, to mimic more real-life conditions. For 

each sample, a control test without adsorbent was also conducted, to normalize for 

possible metal precipitation. 
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The affinity and selectivity of the ZnS material for the heavy metal ion tested is 

expressed using the distribution coefficient Kd, calculated using the equation Kd= 

(V/m)·[(C0-Cf)/(Cf )], where C0 and Cf are the initial and final metal ion concentrations 

(ppm or ppb), V is the testing solution volume (mL) and m is the amount of solid 

exchanger (g) used in the experiment. Also, the capacity, qe, of the aerogel for heavy 

metal removal was calculated using the equation qe = (V/m) (C0 – Cf), with the variables 

defined the same as above, but with C0 and Cf expressed in ppm, and V expressed in L. 

 

5.2.2 Inductively-coupled Plasma Mass Spectrometry (ICP-MS) 

measurements 

Metal concentrations were measured using a Perkin-Elmer Life Sciences Elan 

9000 instrument equipped with an automatic sampler. The data were collected as counts 

per second. A standard external calibration curve was constructed by diluting stock 

solutions of 1000 ppm standards (High-Purity Standards) with 2% HNO3 in HPLC grade 

water. Four calibration standards from 1 to 20 ppb were prepared. The calibration curves 

were linear, with less than 0.1% deviation. The samples were also diluted before 

measurement with 2% HNO3 to concentrations within the calibration range and the 

concentrations of the targeted heavy metals were measured before and after treatment 

with the ZnS aerogel. Isotopes 208Pb, 202Hg, 64Zn and 66Zn were analyzed. For each 

sample, three readings of the ICP-MS intensity were recorded and averaged. Standards 

were measured before and after the samples to analyze for instrument drift. Blank 

samples were analyzed periodically between samples, to check for sampling probe 

contamination. 
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5.2.3 Error determination 

The weight of the ZnS aerogel used for the heavy metal remediation was 

determined using an analytical balance with ± 0.1 mg precision. In a typical experiment, 

the amount of ZnS aerogel used was between 5 and 11 mg. This introduced an error of 

approximately 2% in the final calculation of capacity and distribution coefficient. 

The samples collected after the heavy metal remediation experiments needed to 

be diluted using multi-step dilution to the low ppb levels required by the ICP-MS 

analytical technique used. The dilution skill of the human operator was determined by 

preparing duplicate samples of each collected sample. The samples were than separately 

analyzed, and the results reported as an average value and standard deviation. 

The instrument error or drift over time was also determined by analyzing the same 

samples twice over a few hours’ interval. The experiment was repeated at least twice for 

each initial heavy metal concentration and the results were then reported as the average 

value of the measurements and standard deviation. 

 

5.3 Quantitative estimation of Pb2+ removal from aqueous solutions by ZnS aerogels  

 The qualitative study described in Chapter 4 indicated that the ZnS gels should be 

suitable for the removal of both Pb2+ and Hg2+ ions from contaminated solutions. 

Therefore, I conducted a quantitative study of the material’s removal efficiency, focusing 

on aqueous Pb2+ solutions. Briefly, I treated ZnS aerogels with solutions containing 

different concentrations of heavy metal ranging from 20,000 ppm to 10 ppb, and 

measured the metal concentrations before and after treatment using ICP-MS. The ratio of 
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heavy metal contaminated solution to ZnS aerogel was kept constant at 1000 mL 

solution/ 1 g aerogel for all experiments.  

 The measure of the ZnS aerogel’s affinity for the heavy metal ion was gauged by 

calculating the distribution coefficient, Kd. Kd measures the exchanging material’s 

capacity to partition the heavy metal between the solution and the aerogel; values larger 

than 500 mL/g are considered acceptable, those above 5000 mL/g are very good, and 

those above 50,000 mL/g are considered outstanding.129 

 There are three distinct behaviors corresponding to low, medium, and high Pb2+ 

concentrations as a result of the exchange thermodynamics. Considering the overall 

cation exchange reaction: 

(1) ZnS(s) + Pb2+
(aq)

 ↔ PbS(s) + Zn2+
(aq), 

it can be thought of thermodynamically as the combination of the solubilization processes 

       (2)                            ZnS(s) ↔ Zn2+
(aq) + S2–

(aq)                                      Ksp = 3 x 10–23  

and (3)                            PbS(s) ↔ Pb2+
(aq) + S2–

(aq)                                       Ksp = 3 x 10–28 

 Thermodynamically, (1) = (2) – (3) and the equilibrium constant (K) for the 

cation exchange process can be derived from the solubility product constants for ZnS and 

PbS: K = Ksp ZnS / Ksp PbS = 1.0 x 105. At low, non-forcing Pb2+ concentrations (10-100 

ppb), the equilibrium is limited by the native solubility of ZnS. At medium 

concentrations (20-200 ppm), ZnS solubility is no longer limiting and the equilibrium is 

more favorable for PbS formation. Finally, at high concentrations (2000-20,000 ppm), the 

equilibrium is forced strongly to the right, and the native solubility of PbS becomes 

limiting.    
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 5.3.1 Initial concentrations ranging from 10 to 100 ppb 

 The ZnS aerogel is very effective at removing lead ions from solutions with low 

initial concentrations (up to 100 ppb Pb2+), decreasing the concentration below the EPA 

recommended action level of 15 ppb Pb2+ (Table 5.1, Figure 5.2). This initial 

concentration range is a good mimic for an actual environmental spill, where large 

volumes of dilute solutions must be treated. The Kd values obtained are in the “very 

good” range, since the low initial concentrations are not creating thermodynamically 

driving conditions. However, the low final concentrations attained are encouraging for 

the use of ZnS aerogels in remediation.  

 

Table 5.1. Initial (10–100 ppb) and final concentrations, percent removal and distribution 

coefficient Kd (error represents instrument accuracy) 

Initial Pb2+ 

concentration 

(ppb) 

Final Pb2+ 

concentration 

(ppb) 

Amount of 

Pb2+ removed 

(mmol) 

Amount of 

Zn2+ liberated 

(mmol) 

Removal 

(%) 

Kd 

(mL/g) 

97.08 ± 0.03 (a)  12.24 ± 0.06 0.0041 n/a 87.3 7.27 x103 

93.47 ± 0.25 9.08 ± 0.18 0.0041 n/a 90.1 9.13 x103 

10.15 ± 0.15 1.49 ± 0.07 0.00042 n/a 84.9 6.49 x103 

(a) sample was not stirred. 
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Figure 5.1. Decrease of Pb2+ concentration with time for an initial concentration of 100 

ppb 

 

 5.3.2 Initial concentrations ranging from 20 to 200 ppm 

 In the initial concentration range from 20 to 200 ppm, the forward reaction 

equilibrium is favored and the ZnS aerogel proved to be the most efficient (of all 

concentrations studied) in removing Pb2+ ions from aqueous solutions (Table 5.2, Figure 

5.3), showing “very good” to “excellent” Kd values ranging from 17,200 to 72,300 mL/g 

for Pb2+.  Nearly all of the Pb2+ can be removed (≥ 95%), but the more forcing conditions 

result in higher final Pb2+ concentrations (>50 ppb). 
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Table 5.2. Initial (20–200 ppm) and final concentrations, percent removal and 

distribution coefficient Kd (error represents dilution accuracy) 

Initial Pb2+ 

concentration 

(ppm) 

Final Pb2+ 

concentration 

(ppm) 

Amount of 

Pb2+ removed 

(mol) 

Amount of 

Zn2+ liberated 

(mol) 

Removal 

(%) 

Kd 

(mL/g) 

171 ± 15 a)  9.86 ± 0.3 6.45 9.14 94.5 1.72 x104 

171 ± 15 3.61 ± 0.1 7.27 11.5 98.1 5.05 x104 

13.80 ± 1.09 0.189 ± 0.01 0.545 1.65 98.6 7.23 x104 

1.26 ± 0.10 0.066 ± 0.007 0.0450 2.35 95.5 2.14 x104 

a) sample was not stirred. 

 

 For similar initial Pb2+ concentrations, stirring the solution during the exchange 

contributed to a mere 3-4% increase in the percent removal (see first entry in Tables 5.1 

and 5.2). This is an indication that, for all practical purposes, stirring the samples is not 

required. 
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Figure 5.2. Decrease of Pb2+ and increase of Zn2+ concentrations as a function of contact 

time (error bars represent dilution accuracy). The concentrations have been converted to 

molarity to aid in gauging the cation exchange magnitude 

 

 5.3.3. Initial concentrations ranging from 2000 to 20000 ppm; 

 With initial Pb2+ concentrations higher (i.e. 1.5 fold Pb2+ excess) than the 

saturation value for the amount of ZnS aerogel used (if mole to mole exchange occurs) 

the aerogel exhibits a removal capacity of 1730 ± 90 mg Pb / g ZnS exchanger, which is 

much higher than the previously reported capacities of 331 mg/g for a zinc tin sulfide 

chalcogel62 or 365 mg/g for thiol functionalized oxidic materials,85 and close to the 

theoretical capacity of 2127 mg Pb/ g ZnS. If the equilibrium is pushed to the right by the 

use of higher excess Pb2+ (i.e. 5- or 10-fold) , see Table 5.3, even higher capacities can be 

reached. The fact that the measured capacities are higher than that theoretically calculated 
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based solely on exchange suggests that Pb2+ is also being chemisorbed to the aerogel 

surface, perhaps by residual thiol groups that are still present. Under these strongly 

forcing conditions, the concentration of Pb2+ is largely governed by the PbS solubility 

constant and it is no longer useful to compare Kd values. 

 

5.4 Ion-exchange mechanism 

 In order to discern whether the ion remediation was occurring by exchange, the 

Zn2+ concentration was also monitored. The heavy metal ion concentration decreases 

while the Zn2+ concentration increases, supporting the fact that the removal is occurring 

via an ion-exchange mechanism, and not merely by physisorbtion or chemisorption to 

surface thiol groups. Typical curves obtained are shown in Figure 5.3. When the initial 

concentration of the exchanging ion is low (below full capacity of the ZnS aerogel), the 

moles of released zinc are higher than those of lead removed (Table 5.2). The observed 

formation of the PbS phase by PXRD (Chapter 4, Figure 4.8) indicates that the cation 

exchange reaction does take place, so we attribute this slight Zn2+ excess to the 

dissolution of the ZnS aerogel. At the same time, there is also the possibility of a slight 

ZnS NP contamination due to the breakdown of the gel network. When the initial 

concentration is at or above full exchange capacity, the zinc is completely replaced and 

the number of moles is always lower than the incoming lead (see Table 5.3). 

Nevertheless, the amount of Zn2+ ions liberated during the process is almost constant and 

within the range expected for the complete exchange with Pb2+ (0.056 mmol ZnS were 

used for the experiment), which indicates that the ion exchange occurs preferentially over 

chemisorption of Pb2+. A similar observation of Pb2+ being absorbed above the cation 
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exchange capacity of the material was noticed with the mineral montmorillonite83 and 

was explained by the formation of small Pb NPs at the surface and edges of the 

crystallites. However, we found no evidence of Pb formation, either in TEM, or by 

PXRD (see Figures 4.8 and 4.9).  

 

Table 5.3. Removal capacity and amounts of Pb2+ removed and Zn2+ liberated when 

using 0.056 mmol ZnS aerogel with solutions with different initial Pb2+ concentrations 

(2000–20,000 ppm) 

Initial Pb2+ 

concentration 

(ppm) 

Amount of Pb2+ 

removed 

(mmol) 

Amount of Zn2+

liberated 

(mmol) 

Removal 

capacity 

(mg Pb/ g ZnS)

Removal capacity 

(mmol Pb/ g ZnS)

24600 ± 320 0.078 ± 0.007 0.041 ± 0.009 2950 ± 270 14.2 ± 1.3 

12000 ± 150 0.071 ± 0.003 0.050 ± 0.010 2680 ± 120 12.9 ± 0.58 

2320 ± 27 0.046 ± 0.002 0.031 ± 0.022 1730 ± 90 8.35 ± 0.43 

  

5.5 Effect of competing ions/porosity on removal efficacy; 

 When competing ions such as Na+, Ca2+ or Mg2+ —which can be expected to be 

present in real world samples— are present in large excess (i.e. 1M competing ion vs. ~1 

mM Pb2+), the Kd decreases by one order of magnitude (Table 5.4). This phenomenon has 

been previously observed in a layered potassium manganese tin sulfide material.88 The 

reason for the decrease could be the creation of electrostatic repulsion forces between the 

ZnS aerogel surface and the incoming cation, due to the increase in the solution’s activity 

at these high concentrations. Nevertheless, the ZnS aerogel still showed Pb2+ removal of 
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74% in the presence of Mg2+, 85% in the presence of Ca2+, and 92% in the presence of 

Na+, indicative of the strong material preference for heavy, soft cations. 

 ZnS xerogels (bench-top-dried, low porosity and surface area gels) show almost 

no ability to undergo cation exchange (Kd = 6.7 for 20 ppm Pb2+ solution). A recent 

report130 indicates that, even though xerogels still maintain some porosity after drying, 

most of the pores are occluded, and thus inaccessible to reactants, behaving more like the 

bulk material. The observation of the suppressed heavy metal removal capability 

underscores the importance of accessible pores to the effectiveness of the cation 

exchange reaction  

 

Table 5.4. Distribution coefficients for Pb2+ in the presence of competing ions 

Initial Pb2+ 

concentration 

(ppm) 

Competing ion and 

concentration (M) 

Kd for Pb 

(mL/g) 

Previous report*88 

Kd 

(mL/g) 

172 None 2.35 x 104 1.1–8.9 x 105 

172 Na+  (1M) 1.11 x 104 8.34 x 104 

176 Ca2+ (1M) 5.58 x 103 1.88 x 104 

173 Mg2+ (1M) 2.91 x 103 n/a 

* In the previous report88 Kd values were obtained by treating a layered potassium 

manganese sulfide with a slightly more forcing initial Pb2+ concentration (~ 300 ppm) 

and a slightly lower V/m ratio (~ 900 mL/g) than the ones used here. 
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5.6 Effect of “real-life” samples on removal efficacy; 

 The ZnS aerogel materials were also tested under “real-life” conditions, by 

treating tap water spiked with Pb2+ ions, to mimic a hypothetic contamination occurrence. 

After a 24 hour contact period, the material showed similar behavior as in HPLC grade 

water (Table 5.5) removing more than 90% of the contaminant from solutions with initial 

concentrations ranging from 200 ppb to 200 ppm. 

 

Table 5.5. Percent removal and Kd values for tap water spiked with different Pb2+ 

concentrations 

Initial Pb2+ 

concentration 

(ppm) 

Final Pb2+ 

concentration 

(ppm) 

Removal after 24 

hours 

(%) 

Kd value 

(mL/g) 

196 2.99 98.5 6.47 x 104 

14.7 1.17 92.0 1.15 x 104 

0.253 0.013 94.8 1.80 x 104 

 

5.7 Quantitative study of Hg2+ removal ability; 

A less detailed study was conducted on the ability of ZnS aerogels to remove Hg2+ 

from aqueous solutions. Briefly, the batch method was employed using aqueous solutions 

with initial concentrations ranging from 200 ppm to 200 ppb. Based on the observation 

that the Hg2+ exchange occurs faster, made during the qualitative study (Table 4.2), 

samples were collected after 30 minutes, 1 and 3 hours (Figure 5.4). 
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Figure 5.3. Decrease of Hg2+ and increase of Zn2+ concentrations as a function of contact 

time 

 

The equilibrium concentration is reached within 30 minutes, confirming the 

observed reaction speed trend. Even higher partition abilities than for the case of Pb2+ 

were observed (Kd values from 5.59 x 104 to 2.05 x 105 mL/g), as expected from the 

softer acid character of Hg2+. Moreover, the presence of competing Ca2+ ions does not 

seem to affect the Hg2+ removal ability of the ZnS aerogel, probably also a result of the 

faster kinetics (Table 5.6). A previous report62 on a zinc tin sulfide chalcogel material has 

reported Kd values between 1.62 x 106 and 1.12 x 108 for the removal of Hg2+, albeit 

using a higher volume to mass ratio (10,000 mL solution / g exchanger) and a lower 
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initial Hg2+ concentration (100 ppm), which can affect the equilibrium behavior and thus 

preclude a direct comparison. 

 

Table 5.6. Hg2+ removal ability for initial concentrations of 200 ppm and 200 ppb, and in 

the presence of excess Ca2+ (the maximum contaminant level in drinking water allowed 

by the EPA is 2 ppb Hg) 

Initial Hg2+ concentration 

(ppb) 

Final Hg2+ concentration 

(ppb) 

Contact time 

(hours) 

Kd value 

(mL/g) 

1.82 x 105 (5.01 ± 0.80) x 103 3 1.95 x 105 

329 5.99 ± 0.20 3 5.59 x 104 

2.57 x 105 

(1 M Ca2+) 

1.25 x 103 24 2.05 x 105 

 

5.8 Conclusions 

The quantitative study revealed that the ZnS aerogel shows the highest capacity 

reported to date (14.2 mmol/g) for the removal of Pb2+ from aqueous solutions. 

Distribution coefficient measurements indicate that the material is more efficient with 

initial Pb2+ concentrations in the 20–200 ppm range. This is expected, since this is an 

equilibrium reaction and the balance between thermodynamic and kinetic factors changes 

as the initial concentrations approach the solubility of the cationic species. Nevertheless, 

with initial concentrations around 100 ppb, the ZnS aerogels reduce the lead 

concentration below the 15 ppb Pb action level recommended by the EPA. In the 

presence of competing ions, a one order of magnitude decrease in the distribution 
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coefficients is observed, but the percent removal is still more than adequate. Finally, the 

material shows similar efficiency in “real-life conditions” (i.e. tap water spiked with lead 

ion contaminant), suggesting the real possibility of use for water remediation 

applications. 

The Kd values measured for the lead remediation are similar to those previously 

reported using the zinc tin sulfide chalcogel62; the same report measured higher Kd  

values for mercury. Their experimental conditions were different (they used 10,000 mL 

solution/ g exchanger, compared to 1,000 mL/g used in the dissertation research) and a 

direct comparison is not entirely possible. Another report88 that tested layered potassium 

manganese sulfides using the same V/m ratio as us measured Kd values closer to those we 

report for ZnS aerogels. Nevertheless, the observed overall capacity exhibited by the ZnS 

aerogel exceeds all the other previous reports.  

The high lead removal capacity demonstrated by the intrinsically soft Lewis basic 

ZnS aerogels makes them promising for applications as fixed bed metal removal 

materials. Finally, I note that the distribution coefficient values might be improved upon 

lowering the pH of the contaminant-containing solution, as was previously observed by 

other groups.88 Also, I surmise that the reason for the lower than expected Kd values may 

reside in the less accessible micropores present in the aerogel networks. This is most 

obvious when lower contaminant concentrations are used, and the concentration gradient 

is not large enough to push the equilibrium to completion.  
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CHAPTER 6 

CONCLUSIONS AND PROSPECTUS 

 

6.1 Conclusions 

One of the challenges presented to the emerging field of nanotechnology is the 

ability to transfer the properties of individual nanoparticles (NPs) to assemblies that are 

easily handleable and amenable for device fabrication, while still maintaining the unique 

properties characteristic to the individual NP building blocks. Various approaches have 

been used to this effect, some more effective than others in terms of cost and/or final 

material properties. Our group has used sol-gel chemistry as a means to assemble 

semiconducting metal chalcogenide NPs such as CdSe, CdS, CdTe, ZnS, PbS, PbTe into 

3D gel networks.22, 35, 66, 71, 93, 131 This approach consists of the initial NP synthesis, 

followed by controlled oxidative assembly of the NPs into wet gels and supercritical 

drying to yield aerogels. The resulting materials consist of a dual interconnected 3D 

network of NPs and pores that exhibits a high surface area and maintains the quantum 

confined properties of the semiconducting NP building blocks. These characteristics 

make these materials good candidates for applications that require easily accessible, large 

surface areas (catalysis, sensing), or continuous pathways for charge transport 

(photovoltaics, thermoelectrics). 

This dissertation was focused on the synthesis, characterization and application of 

metal chalcogenide gel networks. The main goals were to (1) investigate the mechanism 

of metal chalcogenide NP gel formation, (2) extend the cation exchange reactions to ZnS 

gels for generating new aerogel materials and understanding the driving forces of the 
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process, and (3) conduct a quantitative study on the ability of ZnS aerogels to remove 

harmful heavy metals from aqueous solutions, using the same facile cation exchange 

reactions. 

 In the dissertation research, the nature of the forces holding the metal 

chalcogenide gel networks together was probed by looking at chemical changes that 

occur during the sol-gel process. Previous Raman studies94 of CdSe gels indicated that 

Se–Se covalent bonds are present in the gel network and might be responsible for the 

interparticle linkage, and that the addition of an appropriate reducing agent is able to 

cleave these bonds, re-generating the NP sol. Also, it was noted that the gelation-

dispersion process is cyclable, and a decrease in the primary particle size upon successive 

cycles was observed by PXRD, TEM and UV-Vis measurements. 

 In Chaper 3, I tested the proposed hypothesis by probing the presence of covalent 

selenide or polyselenide species by XPS. Analysis of the thiolate-capped CdSe NPs and 

the corresponding gel networks indicates that the selenium species present on the surface 

changes to a more oxidized species upon gelation, and the shift was consistent with the 

formation of polyselenide species, thus strengthening the previous observation made in 

Raman. At the same time, a pure reducing agent, NaBH4, was successfully used to break 

the interparticle bonds, enabling the clear distinction between the dual reducing/ligating 

role of the thiolates used for the dispersion of the gel networks. The fact that species with 

reducing character are able to cleave the gel network, while those with Lewis base 

ligating character were not, strengthened the proposed oxidative/reductive mechanism for 

the gel formation/dispersion. Consistent with the proposed mechanism, the successive 

gelation/dispersion cycles result in surface etching of metal and chalcogenide species, 
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yielding smaller particles. This trend was observed in the case of CdS NP gels, extending 

the initial observation in CdSe materials, and allowed for the proposition that the gelation 

mechanism applies beyond CdSe to CdS, i.e., to other metal chalcogenides, such as ZnS, 

PbS or CdTe. 

 The ability of metal chalcogenide NP monolithic gel networks to undergo facile 

cation exchange reactions while maintaining the integrity of the 3D network was 

demonstrated recently.78 This report was an extension of previous studies74, 75, 116 that 

brought forth the ability of metal chalcogenide NPs to surmount the activation energy 

barriers present in dense 3D bulk materials and participate in easy cation exchange. The 

observed extension of the fast cation exchange to CdSe gel networks has presented the 

opportunity of accessing new aerogel materials from already-constructed ones, without 

the need for independent optimization of the NP synthesis and gelation processes. 

 In Chapter 4 of the dissertation research, the cation exchange reaction was 

extended to ZnS gel networks, with the aim of accessing new sulfide aerogel chemistries 

and of better understanding the factors that control the exchange process in the porous, 

3D structures. The exchange does occur under the same mild reaction conditions (room 

temperature, methanol or methanol/water solvent) previously observed for CdSe gels. 

Ag2S and Ag NP-decorated Ag2S gels were accessed by exchanging Ag+ for Zn2+, and 

controlling the reaction time and exposure to light. The interplay between thermodynamic 

and kinetic driving forces for the reaction was gauged by analyzing the exchange with 

two ions that have similar thermodynamic driving forces, namely Pb2+ and Cd2+. The 

exchange occurs at very different rates (minutes for Pb2+ and days for Cd2+) which is an 

indication that, for the experimental conditions used, the difference in solubility is not the 
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driving force governing the overall cation exchange reaction speed. The trend observed 

for the ZnS aerogel cation exchange speed has been observed previously76 for the cation 

exchange of ZnS thin films. A correlation exists between the difference between the 

reduction potential of the incoming cation and that of Zn2+: the larger the difference, the 

faster the exchange. The correlation is present in the ZnS gel networks tested here and it 

was further confirmed by the fast exchange with Cu2+ and Hg2+, both of which have more 

positive reduction potentials when compared to that of Zn2+. 

The simultaneous cation exchange with Cu+ and In3+ resulted in quaternary ZnS-

CuInS2 gels. Under the same mild reaction conditions, the complete conversion of ZnS to 

CuInS2 was not achieved, probably due to the very different mobility of Cu+ and In3+. 

Controlling the speed of the reaction by using different cation precursor species, solvent 

systems or even reaction temperature, is a possible avenue towards accessing this 

particular phase, which is also desirable as a 3D connected NP network for photovoltaic 

applications, due to the fact that the emission spectrum can be tuned throughout the 

visible spectrum.127 

The observed ability of ZnS gel networks to undergo facile cation exchange 

reactions indicated the possibility of using them as heavy metal remediation materials. 

The intrinsic soft Lewis basic character of the sulfide framework should show increased 

affinity and selectivity for the removal of soft heavy metals, when compared to the 

traditionally used oxidic porous materials. Indeed, as presented in Chapter 5, upon 

treating ZnS aerogels with Pb2+ aqueous solutions under thermodynamically forcing 

conditions (10 fold heavy metal ion excess), a removal capacity of 14.2 mmol Pb/ g ZnS 

aerogel was measured, which is the highest reported to date, and almost one order of 
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magnitude higher than previous reports.62 Also, when treating ZnS aerogels with low 

initial concentrations mimicking an actual environmental spill (i.e. ~100 ppb Pb2+), final 

concentrations below the EPA recommended action level of 15 ppb Pb were achieved. In 

the intermediate initial concentration range (20–200 ppm Pb2+), excellent distribution 

coefficient values between 2.14 and 7.23 x 104 mL/g were measured. The distribution 

coefficients decrease by one order of magnitude in the presence of competing ions in high 

excess (1000 fold), but the percent removal of Pb2+ is still adequate (74%, 85% or 92% in 

the presence of Mg2+, Ca2+ or Na+, respectively). The ZnS aerogel is just as efficient in 

removing Pb2+ under real-life conditions (using heavy metal spiked tap water, as opposed 

to HPLC water). The study also revealed that stirring the sample only improves the 

percent removal by a mere 3–4%, and that having an accessible porous network is 

paramount for achieving the high removal capacity. The removal of Hg2+ occurs even 

faster than that of Pb2+, consistent with the qualitative observation made in Chapter 4, and 

excellent distribution coefficients between 5.59 x 104 and 2.05 x 105 mL/g were 

measured. Overall, the high heavy metal removal capacity exhibited by the ZnS aerogels 

makes them suitable candidates for incorporation into water remediation filters. 

 

6.2 Prospectus 

The metal chalcogenide NP gel networks developed in our lab using the sol-gel 

process provide a link that extends the size-dependent and tunable properties of 

individual semiconducting NPs into the device-amenable area of 3D structures. 

Understanding the transport properties of the gel networks and correlating them with their 

intrinsic compositional, morphologic and structural characteristics, requires a thorough 
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understanding of the exact chemical nature of such systems. The presence of an anionic 

network connecting the particles together into 3D structures is beneficial for applications 

in cation exchange reactions. Also, considering electronic transport through the gel 

network, a systematic study of such transport properties might provide even more insight 

into the nature of the selenide species present and their effect on the overall properties of 

the gel network. 

The distribution coefficient values might be further improved if the pH of the 

contaminated solution is decreased slightly, as it was previously noted in another report.88 

A similar increase might occur by using wet gels instead of aerogels as the exchange 

materials. Also, we surmise that the reason for the lower than expected Kd values may 

reside in the less accessible micropores present in the aerogel networks. This is most 

obvious when lower contaminant concentrations are used, and the concentration gradient 

is not large enough to push the equilibrium to completion. We hypothesize that the 

distribution coefficient values will be improved upon switching to a system composed 

mainly of meso- and macropores, one that would allow even better and faster access to 

the surface of the material (i.e. growing the ZnS gel network on the fibers of a porous 

silica paper, similar to previous reports for RuO2 materials132). 

For the generation of the ternary CuInS2 aerogel, a step-wise approach similar to 

that reported elsewhere121 and that takes advantage of the selective solubility of cations 

with various charges, might prove useful. For example, using a methanolic solution of 

tetrakisacetonitrilecopper(I) hexafluorophosphate as the copper ion source might provide 

a slower, more controlled cation exchange that might result in a single CuxSy 

stoichiometry. Once this is achieved, using stoichiometric or only slight excess of In3+ 
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dissolved in a tri-n-butylphosphine (TBP)-methanol mixture could effect the controlled 

exchange for the final CuInS2 composition. This step should take advantage of the fact 

that TBP has a stronger binding affinity to the monovalent Cu+ when compared to 

divalent or trivalent cations, and might allow for the removal of Cu+ and the replacement 

with In3+. Considering the overall scope of the study, that of providing an easy way of 

achieving these new and interesting aerogel materials while avoiding new optimization 

procedures, the balance between the possibility of achieving the desired material and the 

practicality of the procedure, must be carefully considered. 
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ABSTRACT 
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 The dissertation research is focused on (1) uncovering the mechanism of metal 

chalcogenide nanoparticle (NP) gel formation; (2) extending the cation exchange reaction 

protocol to zinc sulfide gel networks, with the goal of accessing new aerogel chemistries 

and understanding the factors that drive the process; and (3) conducting a quantitative 

analysis of the ability of ZnS aerogels to remove heavy metal ions from aqueous 

solutions. 

 The mechanism of metal chalcogenide NP gel formation was investigated using 

Raman spectroscopy and X-ray Photoelectron Spectroscopy to probe the chemical 

changes that occur during the gelation process. These techniques suggest that the bonding 

between the particles in the CdSe NP gels is due to the oxidation of surface selenide 

species, forming covalent Se–Se bonds. Treating the gel networks with a suitable 

reducing agent, such as a thiol, breaks the covalent bond and disperses the gel network. 

The addition of sodium borohydride, a “pure” reducing agent, also breaks down the gel 

network, strengthening the hypothesis that the reducing character of the thiols, not their 
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ligation ability, is responsible for the gel network breakdown. UV-Vis spectroscopy, 

Transmission Electron Microscopy and Powder X-ray Diffraction were used to analyze 

the particles after successive gelation-dispersion cycles. The primary particle size 

decreases after repeated oxidation-reduction cycles, due to NP surface etching. This trend 

is observed for CdSe and CdS gel networks, allowing for the proposition that the 

oxidative-reductive mechanism responsible for the formation-dispersion of the gels is 

general, applying to other metal chalcogenide NP as well. 

 The cation exchange reaction previously demonstrated for CdSe gels was 

extended to ZnS gel networks. The exchange occurs under mild reaction conditions 

(room temperature, methanol solvent) with exchanging ions of different size, charge and 

mobility (Ag+, Pb2+, Cd2+, Cu2+). The overall reaction is kinetically controlled, since 

systems with similar solubility, and thus similar thermodynamic driving force (e.g. PbS 

and CdS) exchange at very different rates. A correlation exists between the speed of the 

reaction and the difference between the reduction potential of the incoming cation and 

that of Zn2+; the larger the difference, the faster the exchange. At the same time, the 

porosity of the aerogels and the surfactant-free surfaces hold great importance for the 

exchange reactions, allowing for exchange between cations of similar size and charge 

(i.e. Pb2+ for Zn2+), a phenomenon that was previously reported as impossible in ligand-

capped metal chalcogenide NPs. These observations allowed for a better understanding of 

the factors governing the cation exchange reaction in nanoscale metal chalcogenides. 

Quaternary ZnS-CuInS2 gels were obtained by cation exchange with Cu+ and In3+, but the 

pure CuInS2 phase was not obtained under the mild reaction conditions used, probably 

due to the very different mobility of the two exchanging cations.  
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The kinetically fast cation exchange process and the propensity of the soft 

chalcogenide gel networks to bind heavy metal ions selectively, suggest that these 

materials could also be suitable for the removal of heavy metal ions from the 

environment. The dissertation research studied the capacity of ZnS aerogels to sequester 

heavy metal ions such as Pb2+ and Hg2+ from water. The materials are efficient in 

removing the heavy metal ions from aqueous solutions with a wide range of initial 

concentrations. For initial concentrations that mimic an environmental spill (i.e. 100 ppb 

Pb2+), the treatment with the aerogel affords a final concentration lower than the 15 ppm 

action level recommended by the EPA. Under thermodynamically forcing conditions, the 

water remediation capacity of the ZnS NP aerogels was determined to be 14.2 mmol Pb2+ 

/ g ZnS aerogel, which is the highest value reported to date. 
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